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In today’s lecture we’re going to examine, in detail, a physical system
whose behavior is modeled by a second-order linear ODE with constant
coefficients. We’ll examine the different possible solutions, what deter
mines these solutions, and what these solutions mean as far as the behav
ior of our system is concerned.

The assigned problems for this section are:

Section 3.4 - 1, 5, 18, 21

Simple Mechanical Systems, and the Differential Equations
that Love Them

Today we’re going to examine a fairly simple mechanical system in detail,
and look closely at its possible solutions.
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We have a mass on a spring connected to a dashpot. The forces on the
mass are:

The force from the spring:
Fs -kx.

The force from the dashpot:
FR = CV.

An external driving force:
FE=f(t).

Today we’ll assume that f(t) = 0. The inhomogeneous, f(t) 0, situa
tion we’ll examine in detail next week.

According to Newton’s second law:

d2x clx
in— = —c—— — kx.

dt2 dt

Or, after a little algebra,

d2x dx
m---+c--+kx=0.

This is a second-order linear homogeneous ODE with constant coeffi
cients. We can rewrite this as:1

d2x cdx k
dt2 mdt in

Before solving this, let’s take a look at another basic mechanical exam
ple; the simple pendulum.

________

yLhn1
1Just diving everything by the mass m.
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We can use the conservation of energy here to derive the differential
equation:

mgy +
1

2
mL2

(

dθ

dt

)2

= C.

If we note that y = L(1 − cos θ) we get:

mgL(1 − cos θ) +
1

2
mL2

(

dθ

dt

)2

= C,

and if we differentiate both sides of this we get the equation:

mgL sin θ
dθ

dt
+ mL2

(

dθ

dt

) (

d2θ

dt2

)

= 0.

Dividing through by the common factors we get:

d2θ

dt2
+

g

L
sin θ = 0.

This is not a linear ODE. However, if we assume θ is small we can use
the approximation sin θ ≈ θ to get:

d2θ

dt2
+

g

L
θ = 0.

This is, essentially, the same equation we saw before with the mass-
spring-dashpot system if we set c = 0. A fundamental idea in physics
is that the same equations have the same solutions, and so the behavior
we witness for the mass-spring-dashpot system will be analogous to the
behavior of the pendulum.
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The Solutions and What They Mean

The differential equation for the pendulum above has the solutions:

θ(t) = c1 cos

(
√

g

L
t

)

+ c2 sin

(
√

g

L
t

)

.

If we choose:

A =
√

c2

1
+ c2

2

and

cos φ =
c1

A
, sin φ =

c2

A

then

θ(t) = A

(

cos φ cos

(
√

g

L
t

)

+ sin θ sin

(
√

g

L
t

))

.

If we use the relation:

cos (θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

then we get the solution:

θ(t) = A cos

(
√

g

L
t − φ

)

.

This is the simplified equation for simple harmonic motion. We call the
terms:

A = Amplitude,

φ = Phase shift,
√

g

L
= Angular frequency = ω.
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From these we define the terms:

w
Frequency: f = 2ir

1 2ir
Period: T = — —.

fcc

Example - Most grandfather clocks have pendulums with adjustable
lengths. One such clock loses 10 mm per day when the length of its pen
dulum is 30 in. With what length pendulum will this clock keep perfect
time?
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Now, if we look again at the mass-spring-dashpot situation we exam-
ined at the beginning of this lecture we note that we can rewrite the differ-
ential equation as:

x′′ + 2px′ + ω2

0
x = 0

with

ω0 =

√

k

m
> 0, and p =

c

2m
> 0.

If we use the quadratic equation to solve the characteristic equation for
this ODE we get:

−2p ±
√

(2p)2 − 4ω2

0

2
= −p ±

√

p2 − ω2

0
.

From this we get three fundamental possibilities, depending on the
sign of the discriminant p2 − ω2

0
:

Case 1: Overdamped -

This case occurs when

p > ω0 a.k.a. c2 > 4mk a.k.a. the discriminant is positive.

In this situation we have 2 real negative roots, and our solution is of
the form:

x(t) = c1e
r1t + c2e

r2t.
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Some representative graphs of this situation are below. We note that
the solution asymptotically goes to 0 as t — cxi

x

Case 2: Critically Damped -

This case occurs when

p = wo a.k.a. c2 = 4mk a.k.a the discriminant is zero.

In this situation we have one real negative root and our solution is of
the form:

x(t) = e(ci + c9t).

Some representative graphs of this situation are below. We note that,
again, the solution asymptotically goes to 0 as t —* oc.
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Case 3: Underdamped -

This case occurs when

p < w0 a.k.a. c2 <4km a.k.a. the discriminant is negative.

In this situation we have two complex roots and our solution is of
the form:

x(t) = e(ci cos (wit) + c2 sin (wit))

where

/
wi=Vw_p2= 2m

As explained for the pendulum we can rewrite this solution as:

x(t) = Ce_Pt cos (wit — ct).

A representative graph of this situation is below. We note, again, that
the solution assymptotically approaches 0 as t —+ oc.2

S

2Unless p = 0, in which case we have the behavior for the pendulum we examined
earlier.

8



Example - Solve the ODE that models the mass-spring-dashpot system
with the parameters:

m = , c = 3,k = 4,

= 2, v0 = 0.

Is the system overdamped, critically damped, or underdamped?
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