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In today’s lecture we’re going to examine, in detail, a physical system
whose behavior is modeled by a second-order linear ODE with constant
coefficients. We'll examine the different possible solutions, what deter-
mines these solutions, and what these solutions mean as far as the behav-
ior of our system is concerned.

The assigned problems for this section are:
Section3.4-1,5, 18,21

Simple Mechanical Systems, and the Differential Equations
that Love Them

Today we're going to examine a fairly simple mechanical system in detail,
and look closely at its possible solutions.
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We have a mass on a spring connected to a dashpot. The forces on the
mass are:

The force from the spring;:
F, g = —kx.

The force from the dashpot:
Fr = —cv.

An external driving force:

Fg = f(t).

Today we'll assume that f(t) = 0. The inhomogeneous, f(t) # 0, situa-
tion we’ll examine in detail next week.

According to Newton's second law:

d*x de g
e T " Ca T
Or, after a little algebra,

d’x dx

This is a second-order linear homogeneous ODE with constant coeffi-
cients. We can rewrite this as:!

dw, cdv ko _,

dt?  mdt  m"

Before solving this, let’s take a look at another basic mechanical exam-
ple; the simple pendulum.

1Just diving everything by the mass m.



We can use the conservation of energy here to derive the differential
equation:

If we note that y = L(1 — cos §) we get:

1, (doN?
mgL(1 — cosf) + gmL (%) =C,

and if we differentiate both sides of this we get the equation:

_do L (dO\ [0

Dividing through by the common factors we get:

a0 g .
E‘FESIH@—O.

This is not a linear ODE. However, if we assume 6 is small we can use
the approximation sin 6 ~ 6 to get:

d’0 g
E—FEG—O.

This is, essentially, the same equation we saw before with the mass-
spring-dashpot system if we set ¢ = 0. A fundamental idea in physics
is that the same equations have the same solutions, and so the behavior
we witness for the mass-spring-dashpot system will be analogous to the
behavior of the pendulum.



The Solutions and What They Mean

The differential equation for the pendulum above has the solutions:

o) = o ([ 52) oo /52,

If we choose:

A=/c+ 2

and

cos ¢ = %, singb:%

then
0(t) = A [ cos ¢ cos \/Et + sin f'sin | 4 [94)).
L L
If we use the relation:
cos (01 + 02) = cos b cos Oy — sin b sin 6,

then we get the solution:

0(t) = Acos (@t ~9).

This is the simplified equation for simple harmonic motion. We call the
terms:

A = Amplitude,
¢ = Phase shift,

\/% = Angular frequency = w.
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From these we define the terms:

w
F ==,
requency : f 5

1 2
Period : T = ~ = —.
[ w

Example - Most grandfather clocks have pendulums with adjustable
lengths. One such clock loses 10 min per day when the length of its pen-
dulum is 30 in. With what length pendulum will this clock keep perfect
time?



Now, if we look again at the mass-spring-dashpot situation we exam-
ined at the beginning of this lecture we note that we can rewrite the differ-
ential equation as:

2"+ 2p2’ + wixr =0
with

k
wozw—>0,andp:i>0.
m 2m

If we use the quadratic equation to solve the characteristic equation for
this ODE we get:

—2p 4 +/(2p)? — 4w? /
p (2p) wO :_pj: p2_Wg-

From this we get three fundamental possibilities, depending on the
sign of the discriminant p* — wg:

Case 1: Overdamped -

This case occurs when
p > wp aka. ¢ > 4mk aka. the discriminant is positive.

In this situation we have 2 real negative roots, and our solution is of
the form:

2(t) = cre™ + e’



Some representative graphs of this situation are below. We note that
the solution asymptotically goes to 0 as t — co.
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Case 2: Critically Damped -

This case occurs when
p = wp a.k.a. ¢® = 4mk a.k.a the discriminant is zero.

In this situation we have one real negative root and our solution is of
the form:

z(t) = e (c1 + cot).

Some representative graphs of this situation are below. We note that,
again, the solution asymptotically goes to 0 as t — oc.
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Case 3: Underdamped -

This case occurs when
p < wp ak.a. ¢ < 4km ak.a. the discriminant is negative.

In this situation we have two complex roots and our solution is of
the form:

z(t) = e P(c; cos (wyt) + cosin (wyt))

where
5 Vdkm — c2

2m

As explained for the pendulum we can rewrite this solution as:

z(t) = Ce P cos (wit — ).

A representative graph of this situation is below. We note, again, that
the solution assymptotically approaches 0 as t — 00.2
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2Unless p = 0, in which case we have the behavior for the pendulum we examined
earlier.




Example - Solve the ODE that models the mass-spring-dashpot system
with the parameters:

1’0:2,1)0:0.

Is the system overdamped, critically damped, or underdamped?



