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At this point in our class we’ve focused almost exclusively on first-
order differential equations, with only passing references to differential
equations of higher order. Today this will change. Today we’ll have our
first substantial discussion of second-order differential equations. We’ll
discuss the necessary and important existence and uniqueness theorem,
and then learn how to solve these differential equations in some simple,
but still very useful, situations.

The assigned problems for this section are:

Section 3.1 - 1, 16, 18, 24, 39

Second-Order Linear Equations

Initial Example

Suppose we take a mass m and attach it to a spring:

If we displace the mass a short distance x from its equilibrium there
will be a restorative force F acting on it, F —kx, where k is the “spring
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constant”. This is called Hooke’s law. If we combine Hooke’s law with
Newton’s second law1 we get:

F = −kx = m
d2x

dt2
.

So, we have the relation:

d2x

dt2
= − k

m
x.

One solution to this second-order ODE is:

x(t) = sin

(

√

k

m
t

)

,

and another is

x(t) = cos

(

√

k

m
t

)

.

In fact, any linear combination

x(t) = c1 sin

(

√

k

m
t

)

+ c2 cos

(

√

k

m
t

)

works as a solution. This raises some questions:

1. Does this cover all solutions to this ODE?

2. Does this handle all possible initial conditions of displacement and
velocity?

3. Does this situation generalize?

Yes is the answer to all three questions.

1Isaac Newton and Robert Hooke were, incidentally, contemporaries. And they hated
each other. But, that’s hardly surprising, as Newton hated almost everybody.
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General Theory of Second-Order Differential Equations

We call a differential equation of the form:

A(x)y′′ + B(x)y′ + C(x)y = F (x)

a linear second-order ODE. Note that the functions A, B, C, and F

aren’t necessarily linear.

We’ll usually be interested in finding a solution on an (possibly un-
bounded) interval I . If F (x) = 0 on I then we call the second-order linear
ODE homogeneous.

Our initial example was indeed a homogeneous second-order ODE
with:

A(x) = m

B(x) = 0
C(x) = k

Now, we saw that we can find two different functions that both solved
the ODE, and in fact any linear combination of these functions also solved
the ODE. This is true in general.

Theorem - For any homogenenous second-order ODE with solutions
y1, y2 on I any function of the form

y = c1y1 + c2y2

is also a solution on I .

This theorem is pretty obvious and can be checked quite easily. It fol-
lows almost immediately from the linearity of the derivative.

A(x)(c1y1 + c2y2)
′′ + B(x)(c1y1 + c2y2)

′ + C(x)(c1y1 + c2y2)

= c1(A(x)y′′

1
+ B(x)y′

1
+ C(x)y1) + c2(A(x)y′′

2
+ B(x)y′

2
+ C(x)y2)

= c1(0) + c2(0) = 0.
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As for questions of existence and uniqueness, just as in linear first-
order ODEs we have an existence and uniqueness theorem:

Theorem - Suppose that functions p, q and f are continuous on the
(possibly unbounded) open interval I containing the point a. Then, given
any two numbers b0, b1 the equation:

y′′ + p(x)y′ + q(x)y = f(x)

has a unique solution on all of I that satisfies:

y(a) = b0, y′(a) = b1.

Example - Verify that the two given solutions are in fact solutions to
the second-order differential equation given below, and then find a lin-
ear combination of these two solutions such that the initial conditions are
satisfied.

y′′ − 9y = 0;

y1 = e3x, y2 = e−3x; y(0) = −1, y′(0) = 15.
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Linear Independence of Two Functions

First, a definition.

Definition - Two functions f, g defined on an open interval I are lin-
early independent on I provided that neither is a constant multiple of the
other.

A pair of functions are linearly dependent if they’re not linearly inde-
pendent.2

For two functions f and g we define a third function called the Wron-
skian:

W (x) =

∣

∣

∣

∣

f g

f ′ g′

∣

∣

∣

∣

= fg′ − gf ′.

Why do we do this? Here’s why. If f and g are linearly dependent then

W (f, g) = 0 on I .

On the other hand, if f and g are linearly independent then

W (f, g) 6= 0 on every point of I .

That every point bit is the important and amazing part.

We’ll end by addressing a question about whether or not we’ve found
all the solutions of a given linear second-order ODE. If y1 and y2 are lin-
early independent solutions of a linear second-order linear ODE then all
solutions of the ODE are of the form:

y(x) = c1y1(x) + c2y2(x)

This can be proven without too much problem by using our existence
and uniqueness theorem along with some linear algebra. It’s done in the
textbook.

2Well... duh!
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Second-Order Linear Homogeneous ODEs with Constant Co-

efficients

A linear homogeneous second-order ODE is an ODE of the form:

ay′′ + by′ + cy = 0

where a, b, c are constant.

If we try the solution y(x) = erx and plug it in we get:

ar2erx + brerx + cerx = 0

Dividing through by erx we see that this solution works if r is a root of
the quadratic equation:

ax2 + bx + c = 0.

So,

r =
−b ±

√
b2 − 4ac

2a

We’ll only deal with distinct roots this time, but if the roots are distinct
real numbers, then all our solutions are of the form:

y(x) = c1e
r1x + c2e

r2x

where the roots are r1 and r2.
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Example - What are all the solutions of the differential equation:

y′′(x) + 2y′(x) − 15y(x) = 0
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