
Math 2280 - Practice Final Exam

University of Utah

Spring 2013

Name: Solution Key

This is a 2 hour exam. Please show all your work, as a worked problem
is required for full points, and partial credit may be rewarded for some
work in the right direction.
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Things You Might Want to Know

Definitions

L(f(t)) =

∫

∞

0

e−stf(t)dt.

f(t) ∗ g(t) =

∫ t

0

f(τ)g(t − τ)dτ .

Laplace Transforms

L(tn) =
n!

sn+1

L(eat) =
1

s − a

L(sin (kt)) =
k

s2 + k2

L(cos (kt)) =
s

s2 + k2

L(δ(t − a)) = e−as

L(u(t− a)f(t − a)) = e−asF (s).

Translation Formula

L(eatf(t)) = F (s − a).

Derivative Formula

L(x(n)) = snX(s) − sn−1x(0) − sn−2x′(0) − · · · − sx(n−2)(0) − x(n−1)(0).
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Fourier Series Definition

For a function f(t) of period 2L the Fourier series is:

a0

2
+

∞
∑

n=1

(

an cos

(

nπt

L

)

+ bn sin

(

nπt

L

))

.

an =
1

L

∫ L

−L

f(t) cos

(

nπt

L

)

dt

bn =
1

L

∫ L

−L

f(t) sin

(

nπt

L

)

dt.
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1. Basic Definitions (10 points)

Circle or state the correct answer to the questions about the following
differential equation:

x2y′′ − sin (x)y′ + y3 = e2x

(2 point) The differential equation is: Linear Nonlinear

(2 points) The order of the differential equation is: 2

For the differential equation:

(x4 − x)y(3) + 2xexy′ − 3y =
√

x − cos (x)

(2 point) The differential equation is: Linear Nonlinear

(2 point) The order of the differential equation is: 3

(2 point) The corresponding homogeneous equation is:

(x4 − x)y(3) + 2xexy′ − 3y = 0.
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2. Phase Diagrams (15 points)

For the autonomous differential equation:

dx

Find all critical points, draw the corresponding phase diagram, and
indicate whether the critical points are stable, unstable, or semi-stable.

Solution - To find the critical points we factor the polynomial

x25x+4—(x4)(xl)

The critical points are the roots of the polynomial, namely x = 1 and
x = 4. The phase diagram is:

:7 4—
I

-t Il

From this we can see that x = 1 is a stable critical point, while x = 4
is unstable.
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3. Ordinary Points, Regular Singular Points, and Irregular Singular
Points (15 points)

Determine if x = 0 is an ordinary, regular singular, or irregular sin-
gular point in each of the following differential equations: (9 points)

a) (5 points)

3x3y′′ + 2x2y′ + (1 − x2)y = 0

Solution - If we divide through by 3x3 we get

P (x) =
2x2

3x3
=

2

3x
,

Q(x) =
1 − x2

3x3
.

Neither are analytic at x = 0, so it’s not an ordinary point. Solv-
ing for p(x) and q(x) we get:

p(x) = xP (x) =
2

3
,

q(x) = x2Q(x) =
1 − x2

3x
.

The function p(x) is analytic at x = 0 (it’s a constant), but q(x) is
not. So, x = 0 is an irregular singular point.

b) (5 points)

x2(1 − x2)y′′ + 2xy′ − 2y = 0

Solution - If we divide through by x2(1 − x2) we get

y′′ +
2x

x2(1 − x2)
y′ −

2

x2(1 − x2)
y = 0.
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The functions P (x) and Q(x) are:

P (x) =
2

x(1 − x2)
,

Q(x) =
2

x2(1 − x2)
,

neither of which are analytic at x = 0. So, x = 0 is not an or-
dinary point. If we examine the functions p(x) = xP (x) and
q(x) = x2Q(x) we get

p(x) =
2

1 − x2
,

q(x) =
2

1 − x2
,

both of which (they’re the same function, after all) are analytic
at x = 0. So, x = 0 is a regular singular point.

c) (5 points)

xy′′ + x2y′ + (ex − 1)y = 0

Solution - If we divide through by x we get

y′′ + xy′ +
(ex − 1)

x
y = 0.

The functions P (x) and Q(x) are:

P (x) = x,

Q(x) =
ex − 1

x
,
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both of which are analytic at x = 0. We can see Q(x) is analytic by
noting that

ex − 1

x
=

∑

∞

n=0
xn

n!
− 1

x
=

∑

∞

n=1
xn

n!

x
=

∞
∑

n=1

xn−1

n!
.

So, x = 0 is an ordinary singular point.
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4. Separable Ordinary Differential Equations (20 points)

Solve the initial value problem

dy

dx
= 4x3y − y;

y(1) = −3

Solution - We can separate this equation as:

dy

y
= (4x3 − 1)dx.

Integrating both sides we get:

ln y = x4 − x + C.

Solving for y, and playing a bit fast and loose with the arbitrary con-
stant, we get:

y = Cex4
−x.

Plugging in the initial condition we get:

−3 = Ce14
−1 = Ce0 = C.

So,

y(x) = −3ex4
−x.
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5. Linear First-Order ODEs (20 points)

Solve the initial value problem

(1 + x)y′ + y = cos x;

y(0) = 1

We can rewrite this as

y′ +
1

1 + x
y =

cos x

1 + x
.

So, P (x) = 1
1+x

, and our integrating factor is

e
R

P (x)dx = e
R

1

1+x
dx = eln 1+x = 1 + x.

So, we can rewrite our differential equation as:

d

dx
((1 + x)y) = cos x.

Integrating both sides we get:

(1 + x)y = sin x + C,

and solving for y we get:

y(x) =
sin x + C

1 + x
.
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Plugging in our initial condition y(0) = 1 we get

1 =
sin 0 + C

1 + 0
= C.

So, our solution is:

y(x) =
sin x + 1

1 + x
.
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6. Nonhomogeneous Linear Differential Equations (25 points)

Find the general solution to the differential equation

y′′ − y′ − 6y = 2x + e−2x.

Solution - First, we solve the homogeneous equation:

y′′ − y′ − 6y = 0.

The characteristic equation is r2 − r− 6 = (r− 3)(r +2). So, the roots
of the characteristic equation are r = 3,−2, and the homogeneous
solution is:

yh = c1e
3x + c2e

−2x.

Now, we need a particular solution to the nonhomogeneous solu-
tion. The equation 2x + e−2x is the sum of a first-order polynomial
and an exponential, so we’ll “guess” our solution will be too:

yp = A + Bx + Ce−2x.

However, we’ve got a problem here. The function e−2x already shows
up in our homogeneous solution. So, we need to replace Ce−2x in our
guess with Cxe−2x. If we do this and plug our guess into our ODE
we get:

y′′

p − y′

p − 6yp

= 4Cxe−2x − 4Ce−2x − B + 2Cxe−2x − Ce−2x − 6A − 6Bx − 6Cxe−2x

= (−6A − B) − 6Bx − 5Ce−2x.
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Equating this with the right-hand side of our differential equation
we get:

−6A − B = 0,

−6B = 2,

−5C = 1.

So, A = 1
18

, B = −1
3
, C = −1

5
. Using these values, our general solu-

tion is:

y(x) = c1e
3x + c2e

−2x +
1

18
−

1

3
x −

1

5
xe−2x.
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7. Systems of Differential Equations (30 points)

Find the general solution to the system of differential equations

x′

1 = 5x1 + x2 + 3x3

x′

2 = x1 + 7x2 + x3

x′

3 = 3x1 + x2 + 5x3

Hint: λ = 2 is an eigenvalue of the coefficient matrix, and all eigen-
values are real.

Solution - The corresponding matrix equation is:

x′ =





5 1 3
1 7 1
3 1 5



 x.

The eigenvalues of the matrix are:

∣

∣

∣

∣

∣

∣

5 − λ 1 3
1 7 − λ 1
3 1 5 − λ

∣

∣

∣

∣

∣

∣

= −λ3 + 17λ2 − 84λ + 108

= −(λ − 2)(λ − 6)(λ − 9).

So, the eigenvalues are λ = 2, 6, 9.

The corresponding eigenvectors will be:

For λ = 2:





3 1 3
1 5 1
3 1 3









a

b

c



 =





0
0
0



 ⇒





1
0
−1





is an eigenvector for λ = 2.
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For λ = 6:





−1 1 3
1 1 1
3 1 −1









a

b

c



 =





0
0
0



 ⇒





1
−2
1





is an eigenvector for λ = 6.

For λ = 9:





−4 1 3
1 −2 1
3 1 −4









a

b

c



 =





0
0
0



 ⇒





1
1
1





is an eigenvector for λ = 9.

So, the general solution is:

x(t) = c1





1
0
−1



 e2t + c2





1
−2
1



 e6t + c3





1
1
1



 e9t.
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8. Systems of Differential Equations with Repeated Eigenvalues (25
points)

Find the general solution to the system of differential equations:

x′ =

(

1 −4
4 9

)

x.

Solution - The eigenvalues of the matrix are:

∣

∣

∣

∣

1 − λ −4
4 9 − λ

∣

∣

∣

∣

= (1 − λ)(9 − λ) + 16 = λ2 − 10λ + 25 = (λ − 5)2.

So, λ = 5 is the only eigenvalue. To get a second solution, we’ll need
to find a generalized eigenvector. So, we’ll need a length 2 chain:

(A − λI)v2 = v1,

(A − λI)v1 = 0.

So, (A − λI)2v1 = 0. Calculating (A − λI)2 we get:

(A − λI)2 =

(

−4 −4
4 4

) (

−4 −4
4 4

)

=

(

0 0
0 0

)

.

So, any vector v2 that is not already an eigenvector of A will work.
Let’s make it easy on ourselves and pick

v2 =

(

1
0

)

.

From this we get

16



v1 = (A − λI)v2 =

(

−4 −4
4 4

) (

1
0

)

=

(

−4
4

)

.

So, our solutions will be:

x1(t) = v1e
5t,

x2(t) = (v1t + v2)e
5t.

So, our general solution is:

x(t) = c1x1(t) + c2x2(t) = c1

(

−4
4

)

e5t + c2

[(

−4
4

)

t +

(

1
0

)]

e5t.
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9. Laplace Transforms (10 points)

Using the definition of the Laplace transform, calculate the Laplace
transform of the function

f(t) = e3t+1,

and state its domain.

Solution - The Laplace transform of f(t) will be:

F (s) =

∫

∞

0

e3t+1e−stdt = e

∫

∞

0

e(3−s)tdt =
e(3−s)t+1

3 − s

∣

∣

∣

∣

∞

0

=
e

s − 3
.

Here we’ve assumed s > 3, which is the domain of F (s).
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10. Laplace Transforms and Differential Equations (25 points)

Find a particular solution to the initial value problem:

x′′ + 4x = δ(t) + δ(t − π);

x(0) = x′(0) = 0.

Solution - Taking the Laplace transform of out terms we get:

L(x′′) = s2X(s) − sx(0) − x′(0) = s2X(s),

L(x) = X(s),

L(δ(t) + δ(t − π)) = 1 + e−πs.

Plugging these in we get:

(s2 + 4)X(s) = 1 + e−πs,

and so

X(s) =
1 + e−πs

s2 + 4
.

We have

L−1

(

1

s2 + 4

)

=
1

2
sin 2t.

Using this and the relation

u(t − a)f(t − a) = e−asF (s)

we get

x(t) =
1

2
sin 2t +

u(t− π)

2
sin 2(t − π).
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11. Power Series (30 points)

Solve the following second-order ODE using power series methods:

y′′ + x2y′ + 2xy = 0.

Solution - x = 0 is an ordinary point, and we have

y(x) =

∞
∑

n=0

cnxn,

y′(x) =
∞

∑

n=0

ncnxn−1,

y′′(x) =

∞
∑

n=0

n(n − 1)cnx
n−2.

Plugging these into our ODE we get:

∞
∑

n=0

n(n − 1)cnxn−2 +

∞
∑

n=0

ncnxn+1 + 2

∞
∑

n=0

cnx
n+1 = 0.

The first non-zero, or at least not automatically zero, power of x is
x0. For this term n = 2 in the frist series, while the other series don’t
enter into it. So,

2(2 − 1)c2x
0 = 0x0 ⇒ 2c2 = 0 ⇒ c2 = 0.

So, c2 = 0. On the other hand, c0 and c1 are “arbitrary” (they would
be determined by the initial conditions) and for higher order powers
we get the recurrence relation:
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(n + 3)(n + 2)cn+3 + (n + 2)cn = 0.

As n ≥ 0 we can divide by (n + 2) and get the relation:

cn+3 = −
cn

n + 3
.

This gives us the terms:

c0 = c0,

c3 = −
c0

3
,

c6 = −
c3

6
=

c0

6 × 3
,

c9 = −
c6

9
= −

c0

9 × 6 × 3
,

and in general

c3n =
c0(−1)n

3nn!
.

As for the c3n+1 terms we have:

c1 = c1,

c4 = −
c1

4
,

c7 = −
c4

7
=

c1

7
,

c10 = −
c7

10
= −

c1

10 × 7 × 4
,

and in general

c3n+1 =
c1(−1)n

1 × 4 × 7 × · · · × (3n + 1)
.
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As c2 = 0 all terms of the form c3n+2 will be zero. So, our solution
will be:

y(x) = c0

∞
∑

n=0

(−1)nx3n

3nn!
+ c1

∞
∑

n=0

(−1)nx3n+1

1 × 4 × 7 × · · · × (3n + 1)
.
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12. Fourier Series (25 points)

The values of the periodic function f(t) in one full period are given.
Find the function’s Fourier series.

f(t) =







−1 −2 < t < 0
1 0 < t < 2
0 t = {−2, 0}

Extra Credit (5 points) - Use this solution and what you know about
Fourier series to deduce the famous Leibniz formula for π.

Solution - We first note that f(t) is odd, so all the an terms in the
Fourier series will be zero. The period here is 4 = 2L, so the bn

Fourier coefficients are:

bn =
1

2

∫ 2

−2

f(t) sin
nπt

2
dt

(noting f(t) is odd, so f(t) sin nπt

2
is even)

=

∫ 2

0

f(t) sin
nπt

2
dt

=

∫ 2

0

sin
nπt

2
dt = −

2

nπ
cos

nπt

2

∣

∣

∣

∣

2

0

= −
2

nπ
((−1)n − 1)

=

{

0 n even
4

nπ
n odd

So, our Fourier series is

f(t) ∼
4

π

∑

n odd

sin
(

nπt

2

)

n
.
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If we plug in t = 1 we get:

f(1) = 1 =
4

π

(

sin
(π

2

)

+
1

3
sin

(

3π

2

)

+
1

5
sin

(

5π

2

)

+ · · ·

)

=
4

π
(1 −

1

3
+

1

5
−

1

7
+

1

9
−

1

11
+ · · · ),

and so

π = 4(1 −
1

3
+

1

5
−

1

7
+

1

9
−

1

11
+ · · · )

which is the famous Leibniz formula for π!
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