Math 2280 - Practice Final Exam

University of Utah

Spring 2013

Name: Solution Key

This is a 2 hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

Things You Might Want to Know

$$
\begin{gathered}
\text { Definitions } \\
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t . \\
f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
\end{gathered}
$$

Laplace Transforms

$$
\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}}
$$

$$
\mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a}
$$

$$
\mathcal{L}(\sin (k t))=\frac{k}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\cos (k t))=\frac{s}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\delta(t-a))=e^{-a s}
$$

$$
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) .
$$

Translation Formula

$$
\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a) .
$$

Derivative Formula
$\mathcal{L}\left(x^{(n)}\right)=s^{n} X(s)-s^{n-1} x(0)-s^{n-2} x^{\prime}(0)-\cdots-s x^{(n-2)}(0)-x^{(n-1)}(0)$.

Fourier Series Definition

For a function $f(t)$ of period $2 L$ the Fourier series is:

$$
\begin{aligned}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} & \left(a_{n} \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right)\right) \\
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(\frac{n \pi t}{L}\right) d t
\end{aligned}
$$

1. Basic Definitions (10 points)

Circle or state the correct answer to the questions about the following differential equation:

$$
x^{2} y^{\prime \prime}-\sin (x) y^{\prime}+y^{3}=e^{2 x}
$$

(2 point) The differential equation is: Linear Nonlinear (2 points) The order of the differential equation is: 2

For the differential equation:

$$
\left(x^{4}-x\right) y^{(3)}+2 x e^{x} y^{\prime}-3 y=\sqrt{x-\cos (x)}
$$

(2 point) The differential equation is: Linear Nonlinear
(2 point) The order of the differential equation is: 3
(2 point) The corresponding homogeneous equation is:

$$
\left(x^{4}-x\right) y^{(3)}+2 x e^{x} y^{\prime}-3 y=0
$$

2. Phase Diagrams (15 points)

For the autonomous differential equation:

$$
\frac{d x}{d t}=x^{2}-5 x+4
$$

Find all critical points, draw the corresponding phase diagram, and indicate whether the critical points are stable, unstable, or semi-stable.

Solution - To find the critical points we factor the polynomial

$$
x^{2}-5 x+4=(x-4)(x-1)
$$

The critical points are the roots of the polynomial, namely $x=1$ and $x=4$. The phase diagram is:

From this we can see that $x=1$ is a stable critical point, while $x=4$ is unstable.
3. Ordinary Points, Regular Singular Points, and Irregular Singular Points (15 points)
Determine if $x=0$ is an ordinary, regular singular, or irregular singular point in each of the following differential equations: (9 points)
a) (5 points)

$$
3 x^{3} y^{\prime \prime}+2 x^{2} y^{\prime}+\left(1-x^{2}\right) y=0
$$

Solution - If we divide through by $3 x^{3}$ we get

$$
\begin{gathered}
P(x)=\frac{2 x^{2}}{3 x^{3}}=\frac{2}{3 x} \\
Q(x)=\frac{1-x^{2}}{3 x^{3}} .
\end{gathered}
$$

Neither are analytic at $x=0$, so it's not an ordinary point. Solving for $p(x)$ and $q(x)$ we get:

$$
\begin{gathered}
p(x)=x P(x)=\frac{2}{3} \\
q(x)=x^{2} Q(x)=\frac{1-x^{2}}{3 x}
\end{gathered}
$$

The function $p(x)$ is analytic at $x=0$ (it's a constant), but $q(x)$ is not. So, $x=0$ is an irregular singular point.
b) (5 points)

$$
x^{2}\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0
$$

Solution - If we divide through by $x^{2}\left(1-x^{2}\right)$ we get

$$
y^{\prime \prime}+\frac{2 x}{x^{2}\left(1-x^{2}\right)} y^{\prime}-\frac{2}{x^{2}\left(1-x^{2}\right)} y=0 .
$$

The functions $P(x)$ and $Q(x)$ are:

$$
\begin{aligned}
& P(x)=\frac{2}{x\left(1-x^{2}\right)} \\
& Q(x)=\frac{2}{x^{2}\left(1-x^{2}\right)}
\end{aligned}
$$

neither of which are analytic at $x=0$. So, $x=0$ is not an ordinary point. If we examine the functions $p(x)=x P(x)$ and $q(x)=x^{2} Q(x)$ we get

$$
\begin{aligned}
& p(x)=\frac{2}{1-x^{2}} \\
& q(x)=\frac{2}{1-x^{2}}
\end{aligned}
$$

both of which (they're the same function, after all) are analytic at $x=0$. So, $x=0$ is a regular singular point.
c) (5 points)

$$
x y^{\prime \prime}+x^{2} y^{\prime}+\left(e^{x}-1\right) y=0
$$

Solution - If we divide through by x we get

$$
y^{\prime \prime}+x y^{\prime}+\frac{\left(e^{x}-1\right)}{x} y=0 .
$$

The functions $P(x)$ and $Q(x)$ are:

$$
\begin{gathered}
P(x)=x \\
Q(x)=\frac{e^{x}-1}{x}
\end{gathered}
$$

both of which are analytic at $x=0$. We can see $Q(x)$ is analytic by noting that

$$
\frac{e^{x}-1}{x}=\frac{\sum_{n=0}^{\infty} \frac{x^{n}}{n!}-1}{x}=\frac{\sum_{n=1}^{\infty} \frac{x^{n}}{n!}}{x}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!}
$$

So, $x=0$ is an ordinary singular point.

4. Separable Ordinary Differential Equations (20 points)

Solve the initial value problem

$$
\begin{gathered}
\frac{d y}{d x}=4 x^{3} y-y \\
y(1)=-3
\end{gathered}
$$

Solution - We can separate this equation as:

$$
\frac{d y}{y}=\left(4 x^{3}-1\right) d x
$$

Integrating both sides we get:

$$
\ln y=x^{4}-x+C .
$$

Solving for y, and playing a bit fast and loose with the arbitrary constant, we get:

$$
y=C e^{x^{4}-x}
$$

Plugging in the initial condition we get:

$$
-3=C e^{1^{4}-1}=C e^{0}=C
$$

So,

$$
y(x)=-3 e^{x^{4}-x}
$$

5. Linear First-Order ODEs (20 points)

Solve the initial value problem

$$
\begin{gathered}
(1+x) y^{\prime}+y=\cos x ; \\
y(0)=1
\end{gathered}
$$

We can rewrite this as

$$
y^{\prime}+\frac{1}{1+x} y=\frac{\cos x}{1+x}
$$

So, $P(x)=\frac{1}{1+x}$, and our integrating factor is

$$
e^{\int P(x) d x}=e^{\int \frac{1}{1+x} d x}=e^{\ln 1+x}=1+x .
$$

So, we can rewrite our differential equation as:

$$
\frac{d}{d x}((1+x) y)=\cos x
$$

Integrating both sides we get:

$$
(1+x) y=\sin x+C,
$$

and solving for y we get:

$$
y(x)=\frac{\sin x+C}{1+x}
$$

Plugging in our initial condition $y(0)=1$ we get

$$
1=\frac{\sin 0+C}{1+0}=C
$$

So, our solution is:

$$
y(x)=\frac{\sin x+1}{1+x} .
$$

6. Nonhomogeneous Linear Differential Equations (25 points)

Find the general solution to the differential equation

$$
y^{\prime \prime}-y^{\prime}-6 y=2 x+e^{-2 x} .
$$

Solution - First, we solve the homogeneous equation:

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

The characteristic equation is $r^{2}-r-6=(r-3)(r+2)$. So, the roots of the characteristic equation are $r=3,-2$, and the homogeneous solution is:

$$
y_{h}=c_{1} e^{3 x}+c_{2} e^{-2 x} .
$$

Now, we need a particular solution to the nonhomogeneous solution. The equation $2 x+e^{-2 x}$ is the sum of a first-order polynomial and an exponential, so we'll "guess" our solution will be too:

$$
y_{p}=A+B x+C e^{-2 x} .
$$

However, we've got a problem here. The function $e^{-2 x}$ already shows up in our homogeneous solution. So, we need to replace $C e^{-2 x}$ in our guess with $C x e^{-2 x}$. If we do this and plug our guess into our ODE we get:

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}^{\prime}-6 y_{p} \\
=4 C x e^{-2 x}-4 C e^{-2 x}-B+2 C x e^{-2 x}-C e^{-2 x}-6 A-6 B x-6 C x e^{-2 x} \\
=(-6 A-B)-6 B x-5 C e^{-2 x}
\end{gathered}
$$

Equating this with the right-hand side of our differential equation we get:

$$
\begin{gathered}
-6 A-B=0 \\
-6 B=2 \\
-5 C=1
\end{gathered}
$$

So, $A=\frac{1}{18}, B=-\frac{1}{3}, C=-\frac{1}{5}$. Using these values, our general solution is:

$$
y(x)=c_{1} e^{3 x}+c_{2} e^{-2 x}+\frac{1}{18}-\frac{1}{3} x-\frac{1}{5} x e^{-2 x} .
$$

7. Systems of Differential Equations (30 points)

Find the general solution to the system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}=5 x_{1}+x_{2}+3 x_{3} \\
& x_{2}^{\prime}=x_{1}+7 x_{2}+x_{3} \\
& x_{3}^{\prime}=3 x_{1}+x_{2}+5 x_{3}
\end{aligned}
$$

Hint: $\lambda=2$ is an eigenvalue of the coefficient matrix, and all eigenvalues are real.

Solution - The corresponding matrix equation is:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right) \mathbf{x}
$$

The eigenvalues of the matrix are:

$$
\begin{gathered}
\left|\begin{array}{ccc}
5-\lambda & 1 & 3 \\
1 & 7-\lambda & 1 \\
3 & 1 & 5-\lambda
\end{array}\right|=-\lambda^{3}+17 \lambda^{2}-84 \lambda+108 \\
=-(\lambda-2)(\lambda-6)(\lambda-9)
\end{gathered}
$$

So, the eigenvalues are $\lambda=2,6,9$.
The corresponding eigenvectors will be:
For $\lambda=2$:

$$
\left(\begin{array}{lll}
3 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

is an eigenvector for $\lambda=2$.

For $\lambda=6$:

$$
\left(\begin{array}{ccc}
-1 & 1 & 3 \\
1 & 1 & 1 \\
3 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

is an eigenvector for $\lambda=6$.

For $\lambda=9$:

$$
\left(\begin{array}{ccc}
-4 & 1 & 3 \\
1 & -2 & 1 \\
3 & 1 & -4
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

is an eigenvector for $\lambda=9$.

So, the general solution is:

$$
\mathbf{x}(t)=c_{1}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) e^{6 t}+c_{3}\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) e^{9 t}
$$

8. Systems of Differential Equations with Repeated Eigenvalues (25 points)
Find the general solution to the system of differential equations:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right) \mathbf{x}
$$

Solution - The eigenvalues of the matrix are:

$$
\left|\begin{array}{cc}
1-\lambda & -4 \\
4 & 9-\lambda
\end{array}\right|=(1-\lambda)(9-\lambda)+16=\lambda^{2}-10 \lambda+25=(\lambda-5)^{2} .
$$

So, $\lambda=5$ is the only eigenvalue. To get a second solution, we'll need to find a generalized eigenvector. So, we'll need a length 2 chain:

$$
\begin{gathered}
(A-\lambda I) \mathbf{v}_{2}=\mathbf{v}_{1} \\
(A-\lambda I) \mathbf{v}_{1}=\mathbf{0}
\end{gathered}
$$

So, $(A-\lambda I)^{2} \mathbf{v}_{1}=\mathbf{0}$. Calculating $(A-\lambda I)^{2}$ we get:

$$
(A-\lambda I)^{2}=\left(\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right)\left(\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

So, any vector \mathbf{v}_{2} that is not already an eigenvector of A will work. Let's make it easy on ourselves and pick

$$
\mathbf{v}_{2}=\binom{1}{0}
$$

From this we get

$$
\mathbf{v}_{1}=(A-\lambda I) \mathbf{v}_{2}=\left(\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right)\binom{1}{0}=\binom{-4}{4} .
$$

So, our solutions will be:

$$
\begin{gathered}
\mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{5 t}, \\
\mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{5 t} .
\end{gathered}
$$

So, our general solution is:

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\binom{-4}{4} e^{5 t}+c_{2}\left[\binom{-4}{4} t+\binom{1}{0}\right] e^{5 t}
$$

9. Laplace Transforms (10 points)

Using the definition of the Laplace transform, calculate the Laplace transform of the function

$$
f(t)=e^{3 t+1}
$$

and state its domain.
Solution - The Laplace transform of $f(t)$ will be:

$$
F(s)=\int_{0}^{\infty} e^{3 t+1} e^{-s t} d t=e \int_{0}^{\infty} e^{(3-s) t} d t=\left.\frac{e^{(3-s) t+1}}{3-s}\right|_{0} ^{\infty}=\frac{e}{s-3}
$$

Here we've assumed $s>3$, which is the domain of $F(s)$.
10. Laplace Transforms and Differential Equations (25 points)

Find a particular solution to the initial value problem:

$$
\begin{gathered}
x^{\prime \prime}+4 x=\delta(t)+\delta(t-\pi) ; \\
x(0)=x^{\prime}(0)=0 .
\end{gathered}
$$

Solution - Taking the Laplace transform of out terms we get:

$$
\begin{gathered}
\mathcal{L}\left(x^{\prime \prime}\right)=s^{2} X(s)-s x(0)-x^{\prime}(0)=s^{2} X(s), \\
\mathcal{L}(x)=X(s), \\
\mathcal{L}(\delta(t)+\delta(t-\pi))=1+e^{-\pi s} .
\end{gathered}
$$

Plugging these in we get:

$$
\begin{gathered}
\left(s^{2}+4\right) X(s)=1+e^{-\pi s}, \\
\text { and so } \\
X(s)=\frac{1+e^{-\pi s}}{s^{2}+4}
\end{gathered}
$$

We have

$$
\mathcal{L}^{-1}\left(\frac{1}{s^{2}+4}\right)=\frac{1}{2} \sin 2 t .
$$

Using this and the relation

$$
u(t-a) f(t-a)=e^{-a s} F(s)
$$

we get

$$
x(t)=\frac{1}{2} \sin 2 t+\frac{u(t-\pi)}{2} \sin 2(t-\pi) .
$$

11. Power Series (30 points)

Solve the following second-order ODE using power series methods:

$$
y^{\prime \prime}+x^{2} y^{\prime}+2 x y=0
$$

Solution $-x=0$ is an ordinary point, and we have

$$
\begin{gathered}
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}, \\
y^{\prime}(x)=\sum_{n=0}^{\infty} n c_{n} x^{n-1}, \\
y^{\prime \prime}(x)=\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n-2} .
\end{gathered}
$$

Plugging these into our ODE we get:

$$
\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} n c_{n} x^{n+1}+2 \sum_{n=0}^{\infty} c_{n} x^{n+1}=0
$$

The first non-zero, or at least not automatically zero, power of x is x^{0}. For this term $n=2$ in the frist series, while the other series don't enter into it. So,

$$
2(2-1) c_{2} x^{0}=0 x^{0} \Rightarrow 2 c_{2}=0 \Rightarrow c_{2}=0
$$

So, $c_{2}=0$. On the other hand, c_{0} and c_{1} are "arbitrary" (they would be determined by the initial conditions) and for higher order powers we get the recurrence relation:

$$
(n+3)(n+2) c_{n+3}+(n+2) c_{n}=0
$$

As $n \geq 0$ we can divide by $(n+2)$ and get the relation:

$$
c_{n+3}=-\frac{c_{n}}{n+3}
$$

This gives us the terms:

$$
\begin{gathered}
c_{0}=c_{0}, \\
c_{3}=-\frac{c_{0}}{3}, \\
c_{6}=-\frac{c_{3}}{6}=\frac{c_{0}}{6 \times 3^{\prime}}, \\
c_{9}=-\frac{c_{6}}{9}=-\frac{c_{0}}{9 \times 6 \times 3}, \\
\text { and in general } \\
c_{3 n}=\frac{c_{0}(-1)^{n}}{3^{n} n!} .
\end{gathered}
$$

As for the $c_{3 n+1}$ terms we have:

$$
\begin{gathered}
c_{1}=c_{1}, \\
c_{4}=-\frac{c_{1}}{4}, \\
c_{7}=-\frac{c_{4}}{7}=\frac{c_{1}}{7}, \\
c_{10}=-\frac{c_{7}}{10}=-\frac{c_{1}}{10 \times 7 \times 4}, \\
\text { and in general }
\end{gathered}
$$

$$
c_{3 n+1}=\frac{c_{1}(-1)^{n}}{1 \times 4 \times 7 \times \cdots \times(3 n+1)} .
$$

As $c_{2}=0$ all terms of the form $c_{3 n+2}$ will be zero. So, our solution will be:

$$
y(x)=c_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n}}{3^{n} n!}+c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{1 \times 4 \times 7 \times \cdots \times(3 n+1)} .
$$

12. Fourier Series (25 points)

The values of the periodic function $f(t)$ in one full period are given. Find the function's Fourier series.

$$
f(t)=\left\{\begin{array}{cc}
-1 & -2<t<0 \\
1 & 0<t<2 \\
0 & t=\{-2,0\}
\end{array}\right.
$$

Extra Credit (5 points) - Use this solution and what you know about Fourier series to deduce the famous Leibniz formula for π.

Solution - We first note that $f(t)$ is odd, so all the a_{n} terms in the Fourier series will be zero. The period here is $4=2 L$, so the b_{n} Fourier coefficients are:

$$
\begin{gathered}
b_{n}=\frac{1}{2} \int_{-2}^{2} f(t) \sin \frac{n \pi t}{2} d t \\
\text { (noting } f(t) \text { is odd, so } f(t) \sin \frac{n \pi t}{2} \text { is even) } \\
=\int_{0}^{2} f(t) \sin \frac{n \pi t}{2} d t \\
=\int_{0}^{2} \sin \frac{n \pi t}{2} d t= \\
=\left\{\begin{array}{cc}
0 & n \text { even } \\
\frac{4}{n \pi} & n \text { odd }
\end{array}\right.
\end{gathered}
$$

So, our Fourier series is

$$
f(t) \sim \frac{4}{\pi} \sum_{n \text { odd }} \frac{\sin \left(\frac{n \pi t}{2}\right)}{n}
$$

If we plug in $t=1$ we get:

$$
\begin{aligned}
& f(1)=1= \frac{4}{\pi}\left(\sin \left(\frac{\pi}{2}\right)+\frac{1}{3} \sin \left(\frac{3 \pi}{2}\right)+\frac{1}{5} \sin \left(\frac{5 \pi}{2}\right)+\cdots\right) \\
&= \frac{4}{\pi}\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots\right) \\
& \quad \text { and so } \\
& \pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots\right)
\end{aligned}
$$

which is the famous Leibniz formula for $\pi!$

