Math 2280 - Practice Final Exam

University of Utah

Spring 2013

Name: _____

This is a 2 hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

Things You Might Want to Know

Definitions

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

$$f(t) * g(t) = \int_0^t f(\tau) g(t-\tau) d\tau.$$

Laplace Transforms

$$\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$$
$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$
$$\mathcal{L}(\sin(kt)) = \frac{k}{s^2 + k^2}$$
$$\mathcal{L}(\cos(kt)) = \frac{s}{s^2 + k^2}$$
$$\mathcal{L}(\delta(t-a)) = e^{-as}$$
$$\mathcal{L}(u(t-a)f(t-a)) = e^{-as}F(s).$$

Translation Formula

$$\mathcal{L}(e^{at}f(t)) = F(s-a).$$

Derivative Formula

$$\mathcal{L}(x^{(n)}) = s^n X(s) - s^{n-1} x(0) - s^{n-2} x'(0) - \dots - s x^{(n-2)}(0) - x^{(n-1)}(0).$$

Fourier Series Definition

For a function f(t) of period 2L the Fourier series is:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right).$$
$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) dt$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) dt.$$

1. Basic Definitions (10 points)

Circle or state the correct answer to the questions about the following differential equation:

$$x^2y'' - \sin(x)y' + y^3 = e^{2x}$$

(2 point) The differential equation is: Linear Nonlinear(2 points) The order of the differential equation is:

For the differential equation:

$$(x^{4} - x)y^{(3)} + 2xe^{x}y' - 3y = \sqrt{x - \cos(x)}$$

(2 point) The differential equation is: Linear Nonlinear

(2 point) The order of the differential equation is:

(2 point) The corresponding homogeneous equation is:

2. Phase Diagrams (15 points)

For the autonomous differential equation:

$$\frac{dx}{dt} = x^2 - 5x + 4$$

Find all critical points, draw the corresponding phase diagram, and indicate whether the critical points are stable, unstable, or semi-stable.

3. Ordinary Points, Regular Singular Points, and Irregular Singular Points (15 points)

Determine if x = 0 is an ordinary, regular singular, or irregular singular point in each of the following differential equations: (9 points)

a) (5 points)

$$3x^3y'' + 2x^2y' + (1 - x^2)y = 0$$

b) (5 points)

$$x^2(1-x^2)y'' + 2xy' - 2y = 0$$

c) (5 points)

$$xy'' + x^2y' + (e^x - 1)y = 0$$

4. **Separable Ordinary Differential Equations** (20 points) Solve the initial value problem

$$\frac{dy}{dx} = 4x^3y - y;$$
$$y(1) = -3$$

5. Linear First-Order ODEs (20 points)

Solve the initial value problem

$$(1+x)y' + y = \cos x;$$
$$y(0) = 1$$

6. **Nonhomogeneous Linear Differential Equations** (25 points) Find the general solution to the differential equation

$$y'' - y' - 6y = 2x + e^{-2x}.$$

More room for this problem, if you need it.

7. Systems of Differential Equations (30 points)

Find the general solution to the system of differential equations

Hint: $\lambda = 2$ is an eigenvalue of the coefficient matrix, and all eigenvalues are real.

More room for this problem, if you need it.

8. **Systems of Differential Equations with Repeated Eigenvalues** (25 points)

Find the general solution to the system of differential equations:

$$\mathbf{x}' = \left(\begin{array}{cc} 1 & -4 \\ 4 & 9 \end{array}\right) \mathbf{x}.$$

More room for this problem, if you need it.

9. Laplace Transforms (10 points)

Using the definition of the Laplace transform, calculate the Laplace transform of the function

$$f(t) = e^{3t+1},$$

and state its domain.

10. Laplace Transforms and Differential Equations (25 points)

Find a particular solution to the initial value problem:

$$x'' + 4x = \delta(t) + \delta(t - \pi);$$

$$x(0) = x'(0) = 0.$$

More room for the problem, if you need it.

11. **Power Series** (30 points)

Solve the following second-order ODE using power series methods:

$$y'' + x^2y' + 2xy = 0.$$

More room for the problem, if you need it.

Even *more* room for the problem, if you need it.

12. Fourier Series (25 points)

The values of the periodic function f(t) in one full period are given. Find the function's Fourier series.

$$f(t) = \begin{cases} -1 & -2 < t < 0\\ 1 & 0 < t < 2\\ 0 & t = \{-2, 0\} \end{cases}$$

Extra Credit (2 points) - Use this solution and what you know about Fourier series to deduce the famous Leibniz formula for π .

More room for the problem, if you need it.