
Math 2280 - Practice Final Exam

University of Utah

Spring 2013

Name:

This is a 2 hour exam. Please show all your work, as a worked problem
is required for full points, and partial credit may be rewarded for some
work in the right direction.
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Things You Might Want to Know

Definitions

L(f(t)) =

∫

∞

0

e−stf(t)dt.

f(t) ∗ g(t) =

∫

t

0

f(τ)g(t − τ)dτ .

Laplace Transforms

L(tn) =
n!

sn+1

L(eat) =
1

s − a

L(sin (kt)) =
k

s2 + k2

L(cos (kt)) =
s

s2 + k2

L(δ(t − a)) = e−as

L(u(t− a)f(t − a)) = e−asF (s).

Translation Formula

L(eatf(t)) = F (s − a).

Derivative Formula

L(x(n)) = snX(s) − sn−1x(0) − sn−2x′(0) − · · · − sx(n−2)(0) − x(n−1)(0).
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Fourier Series Definition

For a function f(t) of period 2L the Fourier series is:

a0

2
+

∞
∑

n=1

(

an cos

(

nπt

L

)

+ bn sin

(

nπt

L

))

.

an =
1

L

∫

L

−L

f(t) cos

(

nπt

L

)

dt

bn =
1

L

∫

L

−L

f(t) sin

(

nπt

L

)

dt.
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1. Basic Definitions (10 points)

Circle or state the correct answer to the questions about the following
differential equation:

x2y′′ − sin (x)y′ + y3 = e2x

(2 point) The differential equation is: Linear Nonlinear

(2 points) The order of the differential equation is:

For the differential equation:

(x4 − x)y(3) + 2xexy′ − 3y =
√

x − cos (x)

(2 point) The differential equation is: Linear Nonlinear

(2 point) The order of the differential equation is:

(2 point) The corresponding homogeneous equation is:
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2. Phase Diagrams (15 points)

For the autonomous differential equation:

dx

dt
= x2 − 5x + 4

Find all critical points, draw the corresponding phase diagram, and
indicate whether the critical points are stable, unstable, or semi-stable.
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3. Ordinary Points, Regular Singular Points, and Irregular Singular
Points (15 points)

Determine if x = 0 is an ordinary, regular singular, or irregular sin-
gular point in each of the following differential equations: (9 points)

a) (5 points)

3x3y′′ + 2x2y′ + (1 − x2)y = 0

b) (5 points)

x2(1 − x2)y′′ + 2xy′ − 2y = 0
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c) (5 points)

xy′′ + x2y′ + (ex − 1)y = 0
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4. Separable Ordinary Differential Equations (20 points)

Solve the initial value problem

dy

dx
= 4x3y − y;

y(1) = −3
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5. Linear First-Order ODEs (20 points)

Solve the initial value problem

(1 + x)y′ + y = cos x;

y(0) = 1
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6. Nonhomogeneous Linear Differential Equations (25 points)

Find the general solution to the differential equation

y′′ − y′ − 6y = 2x + e−2x.
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More room for this problem, if you need it.
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7. Systems of Differential Equations (30 points)

Find the general solution to the system of differential equations

x′

1 = 5x1 + x2 + 3x3

x′

2 = x1 + 7x2 + x3

x′

3 = 3x1 + x2 + 5x3

Hint: λ = 2 is an eigenvalue of the coefficient matrix, and all eigen-
values are real.
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More room for this problem, if you need it.
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8. Systems of Differential Equations with Repeated Eigenvalues (25
points)

Find the general solution to the system of differential equations:

x′ =

(

1 −4
4 9

)

x.
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More room for this problem, if you need it.
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9. Laplace Transforms (10 points)

Using the definition of the Laplace transform, calculate the Laplace
transform of the function

f(t) = e3t+1,

and state its domain.
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10. Laplace Transforms and Differential Equations (25 points)

Find a particular solution to the initial value problem:

x′′ + 4x = δ(t) + δ(t − π);

x(0) = x′(0) = 0.
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More room for the problem, if you need it.
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11. Power Series (30 points)

Solve the following second-order ODE using power series methods:

y′′ + x2y′ + 2xy = 0.

19



More room for the problem, if you need it.
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Even more room for the problem, if you need it.
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12. Fourier Series (25 points)

The values of the periodic function f(t) in one full period are given.
Find the function’s Fourier series.

f(t) =







−1 −2 < t < 0
1 0 < t < 2
0 t = {−2, 0}

Extra Credit (2 points) - Use this solution and what you know about
Fourier series to deduce the famous Leibniz formula for π.
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More room for the problem, if you need it.
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