
Math 2280 - Final Exam

University of Utah

Spring 2013

Name: Solutions by Dylan Zwick

This is a 2 hour exam. Please show all your work, as a worked problem
is required for full points, and partial credit may be rewarded for some
work in the right direction. There are 250 possible points on this exam.
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Things You Might Want to Know

Definitions

L(f(t)) =

∫ ∞

0

e−stf(t)dt.

f(t) ∗ g(t) =

∫ t

0

f(τ)g(t − τ)dτ .

Laplace Transforms

L(tn) =
n!

sn+1

L(eat) =
1

s − a

L(sin (kt)) =
k

s2 + k2

L(cos (kt)) =
s

s2 + k2

L(δ(t − a)) = e−as

L(u(t− a)f(t − a)) = e−asF (s).

Translation Formula

L(eatf(t)) = F (s − a).

Derivative Formula

L(x(n)) = snX(s) − sn−1x(0) − sn−2x′(0) − · · · − sx(n−2)(0) − x(n−1)(0).
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Fourier Series Definition

For a function f(t) of period 2L the Fourier series is:

a0

2
+

∞
∑

n=1

(

an cos

(

nπt

L

)

+ bn sin

(

nπt

L

))

.

an =
1

L

∫ L

−L

f(t) cos

(

nπt

L

)

dt

bn =
1

L

∫ L

−L

f(t) sin

(

nπt

L

)

dt.
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1. Basic Definitions (10 points)

Circle or state the correct answer to the questions about the following
differential equation:

√
xy(5) − x2(y′)2 + exy = cos x

(2 point) The differential equation is: Linear Nonlinear

(2 points) The order of the differential equation is: 5

For the differential equation:

x2y′′ + xy′ − y = sin (ex2+5x+2)

(2 point) The differential equation is: Linear Nonlinear

(2 point) The order of the differential equation is: 2

(2 point) The corresponding homogeneous equation is:

x2y′′ + xy′ − y = 0.
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2. Phase Diagrams (15 points)

For the autonomous differential equation:

dx 2
— = 3x — x
cit

Find all critical points, draw the corresponding phase diagram, and
indicate whether the critical points are stable, unstable, or semi-stable.

Solution - The roots of the function 3x — x2 = x(3 — x) are x = 0, 3. So,
the critical points are x = 0 and x = 3.

The phase diagram is draw below:

1
i

0 3

We can see from the phase diagram above that x = 0 is an unstable
critical point, while x = 3 is a stable critical point.
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3. Ordinary Points, Regular Singular Points, and Irregular Singular
Points (15 points)

Determine if x = 0 is an ordinary, regular singular, or irregular sin-
gular point in each of the following differential equations:

a) (5 points)

x(1 + x)y′′ + 2y′ + 3xy = 0

Solution - The function

P (x) =
2

x(1 + x)

is singular at x = 0, while the functions

p(x) = xP (x) =
2

(1 + x)
,

and

q(x) = x2Q(x) =
3x3

x(1 + x)
=

3x2

(1 + x)
,

are non-singular at x = 0. So, x = 0 is a regular singular point.

b) (5 points)

x3y′′ + 2x2y′ + 7y = 0

Solution - The function

Q(x) = 7
x3

is singular at x = 0, as is the function

q(x) = x2Q(x) = 7
x
.

So, x = 0 is an irregular singular point.
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c) (5 points)

x(1 − x)(1 + x)y′′ + x2y′ + x3y = 0

Solution - The functions

P (x) =
x2

x(1 − x)(1 + x)
=

x

(1 − x)(1 + x)
,

and

Q(x) =
x3

x(1 − x)(1 + x)
=

x2

(1 − x)(1 + x)

are both nonsingular at x = 0. So, x = 0 is an ordinary point.
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4. Indicial Equations (15 points)

What are the roots of the indicial equation for differential equation:

x2y′′ + 3(sin x)y′ + exy = 0.

Will the method of Frobenius be guaranteed to yield two linearly
independent solutions? Could it possibly yield two linearly inde-
pendent solutions? Why or why not?1

Solution - We have:

p0 = lim
x→0

p(x) = lim
x→0

3x sin x

x2
= lim

x→0

3 sin x

x
= 3,

and

q0 = lim
x→0

q(x) = lim
x→0

x2ex

x2
= lim

x→0
ex = 1.

So, the indicial equation is:

r(r − 1) + p0r + q0 = r(r − 1) + 3r + 1 = r2 + 2r + 1 = (r + 1)2.

The indicial equation has a single root, of multiplicity 2, at r = −1.

As there is only one root, there is only one possible Fourier series
solution, a solution of the form:

y(x) = x−1
∞

∑

n=0

cnx
n.

1Note - You aren’t expected to find the solutions here.
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5. Undetermined Coefficients (10 points)

What is the form of the particular solution to the following differen-
tial equation:

y(3) + y′′ + y′ + y = x2e−5x sin (3x),

using the method of undetermined coefficients?2

Solution -

yp = (Ax2 + Bx + C)e−5x sin (3x) + (Dx2 + Ex + F )e−5x cos (3x).

2You don’t have to solve the differential equation, nor do you have to find the coeffi-
cients! You just have to give the form of the particular solution dictated by the method of
undetermined coefficients. So, for example, if the differential equation were y′+3y = sin x

the particular solution would be of the form yp = A cosx + B sinx. I’m just asking for
that, I’m not asking you to find A and B.
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6. Nonhomogeneous Linear Differential Equations with Constant Co-
efficients (30 points)

Find the general solution to the differential equation

y′′ + 7y′ + 12y = x + e−4x.

Solution - The characteristic equation is:

r2 + 7r + 12 = (r + 4)(r + 3).

The roots of the characteristic equation are r = −4,−3, and so the
homogeneous solution is:

yh = c1e
−3x + c2e

−4x.

The method of undetermined coefficients tells us our particular so-
lution should be of the form:

yp = Ax + B + Ce−4x.

However, e−4x is not linearly independent of our homogeneous so-
lution. So, we need to modify our “guess”:

yp = Ax + B + Cxe−4x.

Differentiating this we get:

yp = Ax + B + Cxe−4x,

y′
p = A − 4Cxe−4x + Ce−4x,

y′′
p = 16Cxe−4x − 8Ce−4x.

10



Plugging these into our differential equation we get:

12Ax + (7A + 12B) − Ce−4x = x + e−4x.

Solving for our coefficients we get:

A =
1

12

B = − 7

12
A = − 7

144

C = −1.

So, our particular solution is:

yp =
1

12
x − 7

144
− xe−4x,

and our complete solution is:

y = c1e
−3x + c2e

−4x +
1

12
x − 7

144
− xe−4x.
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7. Systems of Differential Equations (35 points)

Find the general solution to the system of differential equations

x′ =





−2 −9 0
1 4 0
1 3 1



 x

Solution - The matrix





−2 −9 0
1 4 0
1 3 1





has the eigenvalue equation

∣

∣

∣

∣

∣

∣

−2 − λ −9 0
1 4 − λ 0
1 3 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)((−2 − λ)(4 − λ) + 9)

= (1 − λ)(λ2 − 2λ + 1) = (1 − λ)(λ − 1)2 = −(λ − 1)3.

So, there is only one root to the eigenvalue equation, namely λ = 1.

The eigenvector equation:





−3 −9 0
1 3 0
1 3 0









a

b

c



 =





0
0
0



,

has the two linearly independent eigenvectors:
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3
−1
0



, and





0
0
1



.

We need three linearly independent solutions, so we want to con-
struct a generalized eigenvector. We note

(A − λI)2 =





−3 −9 0
1 3 0
1 3 0









−3 −9 0
1 3 0
1 3 0



 =





0 0 0
0 0 0
0 0 0



.

So, any vector that isn’t an eigenvector will do. If we choose

v =





1
0
0



,

we get

(A − λI)v =





−3 −9 0
1 3 0
1 3 0









1
0
0



 =





−3
1
1



.

So, our general solution will be:

x = c1





3
−1
0



 et + c2





0
0
1



 et + c3









−3
1
1



 t +





1
0
0







 et.
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8. Laplace Transforms and Convolutions (15 points)

Using the definition of convolution, calculate the convolution of the
functions:

f(t) = t,

g(t) = et.

What is the Laplace transform of f(t) ∗ g(t)? In other words, what is
L(f(t) ∗ g(t))?3

Solution - The convolution will be:

f(t) ∗ g(t) =

∫ t

0

f(τ)g(t− τ)dτ = et

∫ t

0

τe−τdτ

= −et(τe−τ + e−τ )|t0 = et − 1 − t.

To calculate L(f(t) ∗ g(t)) we can use the relation:

L(f(t) ∗ g(t)) = L(f(t)) · L(g(t)).

As

L(et) =
1

s − 1
,

and

L(t) =
1

s2
,

3If you try to answer this second question using the formal definition of the Laplace
transform, you’re doing it the hard way.
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we have

L(t ∗ et) =
1

s2(s − 1)
.

If we were to do this the harder way we’d get:

L(f(t) ∗ g(t)) = L(et − 1 − t) =
1

s − 1
− 1

s
− 1

s2
=

1

s2(s − 1)
.

OK, I suppose it’s not really that much harder.
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9. Power Series (30 points)

Solve the following second-order ODE using power series methods:

(x2 + 2)y′′ + 4xy′ + 2y = 0.

Solution - We represent our solution y(x) as a power series:

y(x) =
∞

∑

n=0

cnxn.

The derivatives of y(x), represented as power series, will be:

y′(x) =

∞
∑

n=0

cnnxn−1,

and

y′′(x) =

∞
∑

n=0

cnn(n − 1)xn−2.

Plugging these into our differential equation we get:

∞
∑

n=0

cnn(n − 1)xn +

∞
∑

n=0

2cnn(n − 1)xn−2 +

∞
∑

n=0

4ncnxn +

∞
∑

n=0

2cnxn = 0.

Noting that we can rewrite the second summation as

∞
∑

n=0

2cnn(n − 1)xn−2 =
∞

∑

n=0

2cn+2(n + 2)(n + 1)xn,4

4The n = 0 and n = 1 terms on the left are both 0, so that’s why it’s OK to say both
sides start at n = 0.
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we get the recurrence relation:

cnn(n − 1) + 2cn+2(n + 2)(n + 1) + 4ncn + 2cn = 0.

Simplifying this we get:

cn+2 = − n2 + 3n + 2

2(n + 2)(n + 1)
cn = −cn

2
.

So, the constants c0, c1 are arbitrary, and we get:

c2n =
(−1)nc0

2n
,

and

c2n+1 =
(−1)nc1

2n
.

Our general solution is:

y(x) = c0

∞
∑

n=0

(−x2

2

)n

+ c1x

∞
∑

n=0

(−x2

2

)n

.5

Using our geometric series formula we can rewrite this as:

y(x) =
2c0 + 2c1x

2 + x2
,

and the interval of our solution is −
√

2 < x <
√

2, which is as ex-
pected.

5If you just got this far on the final, it would be full credit.
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10. Fourier Series (25 points)

The values of the periodic function f(t) in one full period are given.
Find the function’s Fourier series.

f(t) =







−1 −2 < t < 0
1 0 < t < 2
0 t = {−2, 0}

Extra Credit (5 points) - Use this solution and what you know about
Fourier series to deduce the famous Leibniz formula for π.

Solution - We first note that f(t) is odd, so all the an terms in the
Fourier series will be zero. The period here is 4 = 2L, so the bn

Fourier coefficients are:

bn =
1

2

∫ 2

−2

f(t) sin
nπt

2
dt

(noting f(t) is odd, so f(t) sin nπt

2
is even)

=

∫ 2

0

f(t) sin
nπt

2
dt

=

∫ 2

0

sin
nπt

2
dt = − 2

nπ
cos

nπt

2

∣

∣

∣

∣

2

0

= − 2

nπ
((−1)n − 1)

=

{

0 n even
4

nπ
n odd

So, our Fourier series is

f(t) ∼ 4

π

∑

n odd

sin
(

nπt

2

)

n
.
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If we plug in t = 1 we get:

f(1) = 1 =
4

π

(

sin
(π

2

)

+
1

3
sin

(

3π

2

)

+
1

5
sin

(

5π

2

)

+ · · ·
)

=
4

π
(1 − 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · ),

and so,

π = 4(1 − 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · )

which is the famous Leibniz formula for π!
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11. Fixed Endpoint Problem (20 points)

For the fixed endpoint problem:

X ′′ + λX = 0,

X(0) = X(2) = 0;

what are the possible eigenvalues λn, and the corresponding eigen-
functions Xn?

Solution - We’ll examine the three cases: λ < 0, λ = 0, λ > 0 individ-
ually.

For λ < 0 the solutions will be of the form:

X(x) = Ae
√
−λx + Be−

√
−λx.

If we plug in X(0) = 0 we get:

A + B = 0.

If we plug in X(2) = 0 we get:

Ae2
√
−λ + Be−2

√
−λ = 0.

From the first equation we know A = −B, and so plugging this into
the second equation we get:

A(e2
√
−λ − e−2

√
−λ) = 0.

If A 6= 0 we must have:
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e2
√
−λ = e−2

√
−λ,

which implies

e4
√
−λ = 1.

This is only possible if 4
√
−λ = 0, which would only be possible if

λ = 0, which it is not. So, there are no non-trivial solutions for λ < 0.

For λ = 0 the solution must be of the form:

X(x) = Ax + B.

As X(0) = 0 this means B = 0. If X(2) = 0 we must have 2A = 0,
and so A = 0. Therefore, for λ = 0, there are no non-trivial solutions.

For λ > 0 our solutions will be of the form:

X(x) = A cos
√

λx + B sin
√

λx.

If we plug in X(0) = 0 we get A = 0. If we plug in X(2) = 0 we get:

B sin 2
√

λ = 0.

If B 6= 0 we must have sin 2
√

λ = 0. We know sin x = 0 only when
x = nπ, and so we must have

λn =
n2π2

4
.

These are the possible eigenvalues. The corresponding eigenfunc-
tions are:

Xn(x) = sin
nπx

2
.
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12. The Heat Equation (30 points)

Solve the heat equation:

∂u

∂t
=

∂2u

∂x2
,

with the boundary values:

u(0, t) = u(2, t) = 0,

u(x, 0) =

{

1 0 < x < 2
0 x = {0, 2}

Note - The solutions to the last two problems might be useful to you
here.

Solution - The solutions to the previous two problems are very useful
to us here.

I’ll go through the derivation of the solution in detail. What we’re
looking for is a function, u(x, t), that satisfies the partial differential
equation above, and satisfies the given boundary values.

We “guess” that our solution will be separable. More specifically, we
guess it will be of the form:

u(x, t) = X(x)T (t),

Plugging this into our partial differential equation we get:

X(x)T ′(t) = X ′′(x)T (t).

We can rewrite this to get:
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T ′(t)

T (t)
=

X ′′(x)

X(x)
.

If we modify x but keep t constant, neither side above can change.
If we modify t but keep x constant, neither side above can change.
The only way this is possible is if the equality above is equal to a
constant, which we’ll denote −λ.

So,

T ′(t)

T (t)
=

X ′′(x)

X(x)
= −λ.

We can rewrite these as the linear differential equations:

X ′′ + λX = 0,

and

T ′ + λT = 0.

The first differential equation is the endpoint value problem:

X ′′ + λX = 0,

with the endpoint values u(0, t) = X(0) = 0, and u(2, t) = X(2) = 0.
Hmmm.... does that look familiar? It should, because it’s the fixed
endpoint problem from earlier in the exam. Taking the solution from
that problem we get that the possible values of λ are:

λn =
n2π2

4
,
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with corresponding eigenfunctions:

Xn = sin
(nπx

2

)

.

The solution to the differential equation:

T ′ + λT = 0,

is a constant multiple of e−λt. So, for λn we have:

Tn = e−
n
2

π
2

t

4 .

The corresponding product of functions will be

un(x, t) = Xn(x)Tn(t) = sin
(nπx

2

)

e−
n
2

π
2

t

4 .

Our final solution will be a linear combination of these functions:

u(x, t) =

∞
∑

n=1

cnun(x, t) =

∞
∑

n=1

cn sin
(nπx

2

)

e−
n
2

π
2

t

4 .

The final question is, what are the cn coefficients? Well, we want to
choose them so that:

u(x, 0) =

∞
∑

n=1

cn sin
(nπx

2

)

=

{

1 0 < x < 2
0 x = {0, 2}

Look familiar? Well, again, it should. This is the Fourier series prob-
lem we did earlier. The coefficients calculated there were:
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cn =

{

0 n even
4

nπ
n odd

So, our final solution is:

u(x, t) =
∑

n odd

4

nπ
sin

(nπx

2

)

e−
n
2

π
2

t

4 .

This can also be written as:

u(x, t) =
∞

∑

n=0

4

(2n + 1)π
sin

(

(2n + 1)πx

2

)

e−
(2n+1)2π

2
t

4 .

It’s up to you which of the two forms above you like. Either one is
fine. It’s really an aesthetic decision.

And that’s it! Thank you all so much for a great semester. I hope
you enjoyed and benefited from the class. Have a good summer, and
good luck and best wishes in all you do.

-Dylan
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