
Math 2280 - Final Exam

University of Utah

Spring 2013

Name:

This is a 2 hour exam. Please show all your work, as a worked problem
is required for full points, and partial credit may be rewarded for some
work in the right direction. There are 250 possible points on this exam.
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Things You Might Want to Know

Definitions

L(f(t)) =

∫

∞

0

e−stf(t)dt.

f(t) ∗ g(t) =

∫

t

0

f(τ)g(t − τ)dτ .

Laplace Transforms

L(tn) =
n!

sn+1

L(eat) =
1

s − a

L(sin (kt)) =
k

s2 + k2

L(cos (kt)) =
s

s2 + k2

L(δ(t − a)) = e−as

L(u(t− a)f(t − a)) = e−asF (s).

Translation Formula

L(eatf(t)) = F (s − a).

Derivative Formula

L(x(n)) = snX(s) − sn−1x(0) − sn−2x′(0) − · · · − sx(n−2)(0) − x(n−1)(0).

2



Fourier Series Definition

For a function f(t) of period 2L the Fourier series is:

a0

2
+

∞
∑

n=1

(

an cos

(

nπt

L

)

+ bn sin

(

nπt

L

))

.

an =
1

L

∫

L

−L

f(t) cos

(

nπt

L

)

dt

bn =
1

L

∫

L

−L

f(t) sin

(

nπt

L

)

dt.
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1. Basic Definitions (10 points)

Circle or state the correct answer to the questions about the following
differential equation:

√
xy(5) − x2(y′)2 + exy = cos x

(2 point) The differential equation is: Linear Nonlinear

(2 points) The order of the differential equation is:

For the differential equation:

x2y′′ + xy′ − y = sin (ex2+5x+2)

(2 point) The differential equation is: Linear Nonlinear

(2 point) The order of the differential equation is:

(2 point) The corresponding homogeneous equation is:
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2. Phase Diagrams (15 points)

For the autonomous differential equation:

dx

dt
= 3x − x2

Find all critical points, draw the corresponding phase diagram, and
indicate whether the critical points are stable, unstable, or semi-stable.
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3. Ordinary Points, Regular Singular Points, and Irregular Singular
Points (15 points)

Determine if x = 0 is an ordinary, regular singular, or irregular sin-
gular point in each of the following differential equations:

a) (5 points)

x(1 + x)y′′ + 2y′ + 3xy = 0

b) (5 points)

x3y′′ + 2x2y′ + 7y = 0
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c) (5 points)

x(1 − x)(1 + x)y′′ + x2y′ + x3y = 0
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4. Indicial Equations (15 points)

What are the roots of the indicial equation for the regular singular
differential equation:

x2y′′ + 3(sin x)y′ + exy = 0.

Will the method of Frobenius be guaranteed to yield two linearly
independent solutions? Could it possibly yield two linearly inde-
pendent solutions? Why or why not?1

1Note - You aren’t expected to find the solutions here.
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5. Undetermined Coefficients (10 points)

What is the form of the particular solution to the following differen-
tial equation:

y(3) + y′′ + y′ + y = x2e−5x sin (3x),

using the method of undetermined coefficients?2

2You don’t have to solve the differential equation, nor do you have to find the coeffi-
cients! You just have to give the form of the particular solution dictated by the method of
undetermined coefficients.
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6. Nonhomogeneous Linear Differential Equations with Constant Co-
efficients (30 points)

Find the general solution to the differential equation

y′′ + 7y′ + 12y = x + e−4x.
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More room for this problem, if you need it.
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7. Systems of Differential Equations (35 points)

Find the general solution to the system of differential equations

x′ =





−2 −9 0
1 4 0
1 3 1



 x
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More room for this problem, if you need it.
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8. Laplace Transforms and Convolutions (15 points)

Using the definition of convolution, calculate the convolution of the
functions:

f(t) = t,

g(t) = et.

What is the Laplace transform of f(t) ∗ g(t)? In other words, what is
L(f(t) ∗ g(t))?3

3If you try to answer this second question using the formal definition of the Laplace
transform, you’re doing it the hard way.
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More room for the problem, if you need it.
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9. Power Series (30 points)

Solve the following second-order ODE using power series methods:

(x2 + 2)y′′ + 4xy′ + 2y = 0.
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More room for the problem, if you need it.
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Even more room for the problem, if you need it.
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10. Fourier Series (25 points)

The values of the periodic function f(t) in one full period are given.
Find the function’s Fourier series.

f(t) =







−1 −2 < t < 0
1 0 < t < 2
0 t = {−2, 0}

Extra Credit (5 points) - Use this solution and what you know about
Fourier series to deduce the famous Leibniz formula for π.
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More room for the problem, if you need it.
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11. Fixed Endpoint Problem (20 points)

For the fixed endpoint problem:

X ′′ + λX = 0,

X(0) = X(2) = 0;

what are the possible eigenvalues λn, and the corresponding eigen-
functions Xn?
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More room for the problem, if you need it.
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12. The Heat Equation (30 points)

Solve the heat equation:

∂u

∂t
=

∂2u

∂x2
,

with the boundary values:

u(0, t) = u(2, t) = 0,

u(x, 0) =

{

1 0 < x < 2
0 x = {0, 2}

Note - The solutions to the last two problems might be useful to you
here.
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More room for the problem, if you need it.

24



Even more room for the problem, if you need it.
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