Math 2280 - Exam 4

University of Utah

Spring 2013

Name: Solutions

This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

Things You Might Want to Know

$$
\begin{gathered}
\text { Definitions } \\
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t . \\
f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
\end{gathered}
$$

Laplace Transforms

$$
\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}}
$$

$$
\mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a}
$$

$$
\mathcal{L}(\sin (k t))=\frac{k}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\cos (k t))=\frac{s}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\delta(t-a))=e^{-a s}
$$

$$
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) .
$$

Translation Formula

$$
\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a) .
$$

Derivative Formula
$\mathcal{L}\left(x^{(n)}\right)=s^{n} X(s)-s^{n-1} x(0)-s^{n-2} x^{\prime}(0)-\cdots-s x^{(n-2)}(0)-x^{(n-1)}(0)$.

1. (15 points) The Laplace Transform

Calculate the Laplace transform of the function

$$
f(t)=e^{a t}
$$

using the definition of the Laplace transform.

Solution - Using the definition of the Laplace transform we want to calculate the integral:

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t} e^{a t} d t=\int_{0}^{\infty} e^{(a-s) t} d t \\
= & \left.\frac{e^{(a-s) t}}{a-s}\right|_{0} ^{\infty}=-\frac{1}{a-s}=\frac{1}{s-a} .
\end{aligned}
$$

We must assume here that $s>a$.
2. (25 points) Laplace Transforms and Initial Value Problems

Use Laplace transforms to solve the initial value problem

$$
\begin{gathered}
x^{\prime \prime}-x^{\prime}-2 x=0 \\
x(0)=0 \quad x^{\prime}(0)=2 .
\end{gathered}
$$

Solution - We use the derivative formulas:

$$
\begin{gathered}
\mathcal{L}\left(x^{\prime \prime}\right)=s^{2} X(s)-s x(0)-x^{\prime}(0) \\
\mathcal{L}\left(x^{\prime}\right)=s X(s)-x(0)
\end{gathered}
$$

If we take the Laplace transform of the differential equation above, applying the derivative formulas, and plugging in the given values for $x(0)$ and $x^{\prime}(0)$ we get:

$$
s^{2} X(s)-2-s X(s)-2 X(s)=0
$$

If we solve this for $X(s)$ we get:

$$
X(s)=\frac{2}{s^{2}-s-2}=\frac{2}{(s-2)(s+1)} .
$$

We want the the partial fraction decomposition of the rational function above, which will be:

$$
\frac{2}{(s-2)(s+1)}=\frac{A}{s-2}+\frac{B}{s+1}=\frac{(A+B) s+(A-2 B)}{(s-2)(s+1)} .
$$

So, we have the two linear equations:

$$
\begin{gathered}
A+B=0 \\
A-2 B=2
\end{gathered}
$$

Solving these for A and B gives us $A=\frac{2}{3}$ and $B=-\frac{2}{3}$. So, plugging these values into our partial fraction decomposition we get:

$$
X(s)=\frac{2}{3}\left(\frac{1}{s-2}\right)-\frac{2}{3}\left(\frac{1}{s+1}\right)
$$

Taking the inverse Laplace transform of $X(s)$ gives us our solution:

$$
x(t)=\frac{2}{3} e^{2 t}-\frac{2}{3} e^{-t}
$$

3. (15 points) Convolutions

Calculate the convolution, $f(t) * g(t)$, of the following functions

$$
f(t)=e^{a t}, \quad g(t)=e^{b t} .(a \neq b)
$$

Solution - This is just a matter of calculating the integral:

$$
e^{a t} * e^{b t}=\int_{0}^{t} e^{a \tau} e^{b(t-\tau)} d \tau
$$

Taking this integral gives us:

$$
\begin{gathered}
\int_{0}^{t} e^{a \tau} e^{b(t-\tau)} d \tau=e^{b t} \int_{0}^{t} e^{(a-b) \tau} d \tau=\left.\frac{e^{b t}}{a-b} e^{(a-b) \tau}\right|_{0} ^{t} \\
=\frac{e^{a t}-e^{b t}}{a-b}
\end{gathered}
$$

4. (25 points) Delta Functions

Solve the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+2 x^{\prime}+x=t+\delta(t) \\
x(0)=0 \quad x^{\prime}(0)=1 .
\end{gathered}
$$

Solution - If we take the Laplace transform of both sides of the initial value problem above we get:

$$
s^{2} X(s)-1+2 s X(s)+X(s)=\frac{1}{s^{2}}+1
$$

Solving this for $X(s)$ gives us:

$$
X(s)=\frac{2 s^{2}+1}{s^{2}(s+1)^{2}}
$$

Calculating the partial fraction decomposition of this rational function gives us:

$$
\begin{gathered}
\frac{2 s^{2}+1}{s^{2}(s+1)^{2}}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+1}+\frac{D}{(s+1)^{2}} \\
=\frac{(A+C) s^{3}+(2 A+B+C+D) s^{2}+(A+2 B) s+B}{s^{2}(s+1)^{2}} .
\end{gathered}
$$

This gives us four linear equations:

$$
\begin{gathered}
A+C=0, \\
2 A+B+C+D=2, \\
A+2 B=0, \\
B=1
\end{gathered}
$$

These are quite easily solved to get $A=-2, B=1, C=2, D=3$. So, our partial fraction decomposition is:

$$
X(s)=\frac{-2}{s}+\frac{1}{s^{2}}+\frac{2}{s+1}+\frac{3}{(s+1)^{2}} .
$$

The inverse Laplace transform of $X(s)$, our solution $x(t)$, is:

$$
x(t)=(t-2)+2 e^{-t}+3 t e^{-t}
$$

5. (10 points) The Ratio Test

Use the ratio test to determine the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{n+1}{3^{n}} x^{n}
$$

Solution - We want to use the ratio test to calculate the radius of convergence, which means we want to calculate the limit:

$$
\lim _{n \rightarrow \infty}\left(\frac{\frac{n+1}{3^{n}}}{\frac{n+2}{3^{n+1}}}\right)=\lim _{n \rightarrow \infty} 3\left(\frac{n+1}{n+2}\right)=3 .
$$

So, the power series has radius of convergence 3, and converges for $|x|<3$.

