Math 2280 - Practice Exam 4

University of Utah

Spring 2013

Name: Solution Key

This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (15 points) The Laplace Transform

Calculate the Laplace transform of the function

$$f(t) = t^2$$

using the definition of the Laplace transform.

Solution - Using the definition of the Laplace transform we get:

$$\mathcal{L}(t^2) = \int_0^\infty t^2 e^{-st} dt = -t^2 \frac{e^{-st}}{s} \Big|_0^\infty + \frac{2}{s} \int_0^\infty t e^{-st} dt$$
$$= \frac{1}{s} \int_0^\infty 2t e^{-st} dt = -2t \frac{e^{-st}}{s} \Big|_0^\infty + \frac{2}{s^2} \int_0^\infty e^{-st} dt = 0 - \frac{2e^{-st}}{s^3} \Big|_0^\infty = \frac{2}{s^3}.$$

Where here we've just used integration by parts multiple times. Note we need to assume s > 0.

2. (25 points) *Laplace Transforms and Initial Value Problems* Use Laplace transforms to solve the initial value problem

$$x'' - 6x' + 8x = 2$$
$$x(0) = x'(0) = 0.$$

Solution - Using the formula for taking the Laplace transform of a derivative, we get that the Laplace transform of the left side of the differential equation is:

$$(s^{2}X(s) - sx(0) - x'(0)) - 6(sX(s) - x(0)) + 8X(s).$$

Plugging in x(0) = x'(0) = 0 we get

$$s^{2}X(s) - 6sX(s) + 8X(s) = (s^{2} - 6s + 8)X(s) = (s - 4)(s - 2)X(s).$$

The Laplace transform of the right side is

$$\mathcal{L}(2) = \frac{2}{s}.$$

So, taking the Laplace transform of both sides of the equality gives us:

$$(s-4)(s-2)X(s) = \frac{2}{s},$$

and so

$$X(s) = \frac{2}{s(s-4)(s-2)}.$$

We need to do a partial fraction decomposition on the right hand side. If we do this we get

$$\frac{2}{s(s-4)(s-2)} = \frac{A}{s} + \frac{B}{s-4} + \frac{C}{s-2}$$
$$= \frac{(A+B+C)s^2 - (6A+2B+4C)s + 8A}{s(s-4)(s-2)}.$$

So, we have the three equations

$$A + B + C = 0,$$

$$6A + 2B + 4C = 0,$$

$$8A = 2.$$

Solving these three linear equations for *A*, *B*, and *C* we get $A = \frac{1}{4}, B = \frac{1}{4}, C = -\frac{1}{2}$.

So, the Laplace transform is

$$X(s) = \frac{1}{4} \left(\frac{1}{s}\right) + \frac{1}{4} \left(\frac{1}{s-4}\right) - \frac{1}{2} \left(\frac{1}{s-2}\right).$$

Taking the inverse Laplace transform gives us

$$x(t) = \frac{1}{4} + \frac{1}{4}e^{4t} - \frac{1}{2}e^{2t},$$

which is the solution to the initial value problem.

3. (15 points) Convolutions

Calculate the convolution, f(t) * g(t), of the following functions

$$f(t) = t, \qquad g(t) = e^{at}.$$

The convolution f(t) * g(t) is

$$f(t) * g(t) = \int_0^t f(\tau)g(t-\tau)dt = \int_0^t \tau e^{a(t-\tau)}d\tau.$$

Calculating this integral we get:

$$\int_{0}^{t} \tau e^{at} e^{-a\tau} d\tau = e^{at} \int_{0}^{t} \tau e^{-a\tau} d\tau$$
$$= e^{at} \left(-\frac{\tau e^{-a\tau}}{a} \Big|_{0}^{t} + \frac{1}{a} \int_{0}^{t} e^{-a\tau} d\tau \right) = -\frac{t}{a} - e^{at} \left(\frac{1}{a^{2}} e^{-a\tau} \Big|_{0}^{t} \right)$$
$$= -\frac{t}{a} - \frac{1}{a^{2}} + \frac{e^{at}}{a^{2}} = \frac{e^{at} - at - 1}{a^{2}}.$$

4. (25 points) *Delta Functions*

Solve the initial value problem

$$x'' + 2x' + x = \delta(t) - \delta(t - 2)$$
$$x(0) = x'(0) = 2.$$

Solution - Taking the Laplace transform of both sides of the equation we get

$$(s^{2}X(s) - 2s - 2) + 2(sX(s) - 2) + X(s) = 1 - e^{-2s}.$$

Simplifying this we get

$$(s^{2} + 2s + 1)X(s) = 2s + 7 - e^{-2s},$$

and solving this for X(s) we get

$$X(s) = \frac{2s+7-e^{-2s}}{(s+1)^2} = 2\frac{s+1}{(s+1)^2} + 5\frac{1}{(s+1)^2} - \frac{e^{-2s}}{(s+1)^2}.$$

Taking the inverse Laplace transform of this we get:

$$x(t) = 2e^{-t} + 5te^{-t} - u(t-2)(t-2)e^{-(t-2)}.$$

5. (10 points) The Ratio Test

Use the ratio test to determine the radius of convergence of the geometric series

$$\sum_{n=0}^{\infty} x^n$$

Solution - The coefficients in the power series above are all 1. So, $c_n = 1$ for all n. Plugging this into the ratio test we get

$$\lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} 1 = 1.$$

So, the radius of convergence is $\rho = 1$, and the geometric series converges for |x| < 1.