Math 2280 - Exam 2

University of Utah

Spring 2013
Name: \quad Solutions
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (25 points) Population Models

For the population model

$$
\frac{d P}{d t}=3 P(5-P)
$$

what are the equilibrium populations, and for each equilibrium popluation determine if it is a stable or unstable. Draw the corresponding phase diagram. Then, use separation of variables to solve the population model exactly with the initial population $P(0)=8$.

$$
3 p(s-p)=0 \text { if } p=0 \text { or } p=s
$$

So, equilibrium populations are $p=0$ or $P=S$.

$$
\begin{aligned}
& \frac{d p}{d t}=3 p(S-p) \\
& \Rightarrow \frac{d p}{P(S-p)}=3 d t
\end{aligned}
$$

More room for problem 1, if you need it.

$$
\begin{aligned}
& \left(\frac{A}{P}+\frac{B}{S-P}\right) d P=3 d t \\
& \frac{A(S-P)+B P}{P(S-P)}=\frac{1}{P(S-P)} \\
& P(B-A)+S A=1 \\
& \Rightarrow A=\frac{1}{s} \\
& B=\frac{1}{5} \\
& \frac{1}{5} \int\left(\frac{1}{P}+\frac{1}{s-p}\right) d P=\int 3 d t \\
& \Rightarrow \ln p-\ln (s-p)=19 t+C \Rightarrow \ln \left(\frac{p}{s-p}\right)=15+t C \\
& \Rightarrow \frac{p}{s-p}=C e^{15 t} \Rightarrow P\left(1+C e^{15 t}\right)=5\left(e^{15 t}\right. \\
& \Rightarrow P(t)=\frac{5 C e^{15 t}}{1+C e^{15 t}} \quad P(0)=\frac{5 C}{1+C}=8 \Rightarrow S C=8+8 C \\
& \Rightarrow-3 C=8 \Rightarrow C=-\frac{8}{3} \\
& P(t)=\frac{-\frac{40}{3} e^{15 t}}{1-\frac{8}{3} e^{15 t}}=\frac{40 e^{15 t}}{8 e^{15 t}-3}=\frac{40}{8-3 e^{-15 t}}
\end{aligned}
$$

2. (20 points) Euler's Method

Use Euler's method with a step size $h=1$ to calculate an approxinmate value for $y(3)$, where $y(x)$ is the solution to the initial value problem

$$
\begin{gathered}
\frac{d y}{d x}=-3 x^{2} y \\
y(0)=3
\end{gathered}
$$

$$
\begin{aligned}
& y_{0}=3 \quad \text { at } x=0 \\
& y_{1}=3+1\left(-3\left(0^{2}\right) 3\right)=3 \text { at } x=1 \\
& y_{2}=3+1\left(-3\left(1^{2}\right)(3)\right)=-6 \text { at } x=2 \\
& y_{3}=-6+1\left(-3\left(2^{2}\right)(-6)\right)=-6+72=66 \text { at } x=3
\end{aligned}
$$

More room for problem 2, if you need it.
3. (20 points) Higher Order Linear Homogeneous Differential Equations with Constant Coefficients

Find the general solution to the differential equation:

$$
y^{(3)}+y^{\prime \prime}-y^{\prime}-y=0
$$

Characteristic Equation.

$$
\begin{aligned}
& r^{3}+r^{2}-r-1=(r-1)\left(r^{2}+2 r+1\right) \\
&=(r-1)(r+1)^{2} \\
& \text { So, the general solution is: } \\
& y(x)=c_{1} e^{x}+c_{2} e^{-x}+c_{3} x e^{-x}
\end{aligned}
$$

4. (15 points) Wronskians

Use the Wronskian to prove that the functions

$$
f(x)=e^{x} \quad g(x)=\cos x \quad h(x)=\sin x
$$

are linearly independent on the real line \mathbb{R}.

$$
\left|\begin{array}{r}
e^{x} \cos x \sin x \\
e^{x}-\sin y \cos x \\
e^{x}-\cos x-\sin x
\end{array}\right|=e^{x}\left(\sin ^{2} x+\cos ^{2} x\right)-e^{x}(-\cos x \sin x+\cos x \sin x)
$$

5. (20 points) Nonhomogeneous Linear Equations Find the solution to the linear ODE:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{-x}
$$

with initial conditions

$$
y(0)=0
$$

$$
y^{\prime}(0)=3
$$

Character is tic equation

$$
\begin{gathered}
r^{2}+3 r+2=(r+2)(r+1) \\
y_{h}=C_{1} e^{-2 x}+c_{2} e^{-x} \\
y_{p}=A e^{-x} \text { doesn't work, so we need } \\
y_{p}=A x e^{-x} \\
y_{p}^{\prime}=-A x e^{-x}+A e^{-x} \\
y_{p}^{\prime \prime}=A x e^{-x}-2 A e^{-x} \\
y_{p}^{\prime \prime}+3 y_{p}^{\prime}+2 y_{p}=A x e^{-x}-2 A e^{-x}-3 A x e^{-x}+3 A e^{-x}+2 A x e^{-x} \\
8=A e^{-x}=e^{-x} \\
80, A=1 .
\end{gathered}
$$

More room for problem 5, if you need it.

$$
\begin{gathered}
y(x)=c_{1} e^{-2 x}+c_{2} e^{-x}+x e^{-x} \\
y^{\prime}(x)=-2 c_{1} e^{-2 x}-c_{2} e^{-x}-x e^{-x}+e^{-x} \\
y(0)=c_{1}+c_{2}=0 \\
y^{\prime}(0)=-2 c_{1}-c_{2}+1=3
\end{gathered}
$$

So, $\quad c_{1}+c_{2}=0$

$$
\begin{aligned}
-2 c_{1}-c_{2} & =2 \quad \Rightarrow \quad c_{2}
\end{aligned}=2
$$

Ergo,

$$
y(x)=-2 e^{-2 x}+2 e^{-x}+x e^{-x}
$$

