Math 2280 - Practice Exam 1

University of Utah

Spring 2013
Name: $\quad \int 0 \mid a+10 n$
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (15 Points) Differential Equation Basics
(a) (5 points) What is the order of the differential equation given below?

$$
\left(y^{\prime \prime}\right)^{2}+2 x y^{\prime}-\sin (x) y^{3}=14 x^{2}+e^{x}
$$

(b) (5 points) Is the differential equation given below linear?

$$
y^{(3)}+2 x^{2} y^{\prime \prime}-4 \sin (x) y^{\prime}+e^{x} y=x^{4}+x^{2} e^{x}
$$

(c) (5 points) On what intervals are we guaranteed a unique solution exists for the differential equation below?

$$
\begin{aligned}
& \ln (x) \text { is defined for } x>0 \text {, and } \frac{x+3}{y^{\prime}-1 \ln (x) y=\frac{x+3}{x^{2}-1}} \text { is } \\
& \text { defined for } x \neq \pm 1 \text {. So, were quaranted a } \\
& \text { unique solution exists for an initial value } \\
& (a, b) \text { if } a \in(0,1) \text { or } a>1 \text {. }
\end{aligned}
$$

2. (25 points) Separable Equations

Find the general solution to the differential equation given below.

$$
\begin{aligned}
& \frac{d y}{d x}=-2 x y^{2} \\
\Rightarrow & \frac{d y}{d x}+2 x y^{2}=0 \\
\Rightarrow & y^{2} \\
\Rightarrow & \frac{d y}{y^{2}}=-2 x d x \\
\Rightarrow & -\frac{1}{y}=-2 x d x \\
\Rightarrow & y=\frac{1}{x^{2}+C}
\end{aligned}
$$

3. (25 points) Substitution Methods

Find the general solution to the differential equation given below.

$$
y^{\prime}=y+y^{3}
$$

$y^{\prime}-y=y^{3} \quad$ Bernoulli equation.

$$
\begin{aligned}
& v=y^{-2} \quad \frac{d v}{d x}=-2 y^{-3} \frac{d y}{d x} \\
& \Rightarrow y^{\prime}=-\frac{y^{3}}{2} v^{\prime} \\
& y^{\prime}-y=y^{3} \Rightarrow \frac{y^{\prime}}{y^{3}}-\frac{1}{y^{2}}=1 \\
& \Rightarrow \frac{y^{\prime}}{y^{3}}=-\frac{v^{\prime}}{2}-\frac{1}{y^{2}}=-v \\
& \Rightarrow-\frac{v^{\prime}}{2}-v=1 \Rightarrow v^{\prime}+2 v=-2 \\
& \Rightarrow e^{2 x} v^{\prime}+2 e^{2 x} v=-2 e^{2 x} \\
& \Rightarrow \frac{d}{d x}\left(e^{2 x} v\right)=-2 e^{2 x} \Rightarrow \\
& v(x)=\frac{c}{e^{2 x}}-1 \\
& \Rightarrow \frac{1}{y^{2}}=\frac{c}{e^{2 x}}-1>e^{2 x} v=-e^{2 x}+C
\end{aligned}
$$

4. (10 points) Existence and Uniqueness

For what initial conditions $y(a)=b$ does the following differential equation have a unique solution in an interval around a ?

$$
\frac{d y}{d x}=\sqrt{x-y}
$$

$f(x, y)=\sqrt{x-y}$ is defined for $x \geq y$ $\frac{\partial f}{\partial y}=-\frac{1}{2 \sqrt{x-y}}$ is defined for $x>y$.
Also, both continuous for $x>y$.
So, for H if $y(a)=b$ if $a>b$ a unique solution exists in an interval around a.
5. (25 points) First-Order Linear Equations

Find a solution to the initial value problem given below, and explain, if it's true, why the solution is unique.

$$
\begin{aligned}
& y^{\prime}-\frac{y}{x}=1 \quad e^{\int-\frac{d y}{x}}=e^{-\ln x+C}=\frac{c}{x} \\
& \frac{d}{d x} \quad \frac{y^{\prime}}{x}-\frac{y}{x^{2}}=\frac{1}{x} \\
& \Rightarrow \frac{d}{d x}\left(\frac{y}{x}\right)=\frac{1}{x} \\
& \Rightarrow \frac{y}{x}=\ln (x)+C \\
& y(1)=1 \ln (1)+((1)=7 \\
& y(x)=x \ln (x)+7 x \quad \begin{array}{l}
y^{\prime}-\left(\frac{1}{x}\right) y=1 \\
\text { Both }-\frac{1}{x} \text { and } 1 \text { are } \\
\text { continuous at } x=1, \\
\text { So the solution is } \\
\text { unique }
\end{array}
\end{aligned}
$$

