Math 2280 - Assignment 5

Dylan Zwick

Spring 2013

Section 3.3-1, 10, 25, 30, 43
Section 3.4-1, 5, 18, 21
Section 3.5-1, 11, 23, 28, 35, 47, 56
Section 3.6-1, 2, 9, 17, 24

Section 3.3 - Homogeneous Equations with Constant Coefficients

3.3.1 - Find the general solution to the differential equation

$$
y^{\prime \prime}-4 y=0 .
$$

3.3.10 - Find the general solution to the differential equation

$$
5 y^{(4)}+3 y^{(3)}=0
$$

3.3.25 - Solve the initial value problem

$$
\begin{gathered}
3 y^{(3)}+2 y^{\prime \prime}=0 \\
y(0)=-1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1 .
\end{gathered}
$$

3.3.30 - Find the general solution to the differential equation

$$
y^{(4)}-y^{(3)}+y^{\prime \prime}-3 y^{\prime}-6 y=0 .
$$

3.3.43 -

(a) - Use Euler's formula to show that every complex number can be written in the form $r e^{i \theta}$, where $r \geq 0$ and $-\pi<\theta \leq \pi$.
(b) - Express the numbers $4,-2,3 i, 1+i$, and $-1+i \sqrt{3}$ in the form $r e^{i \theta}$.
(c) - The two square roots of $r e^{i \theta}$ are $\pm \sqrt{r} e^{i \theta / 2}$. Find the square roots of the numbers $2-2 i \sqrt{3}$ and $-2+2 i \sqrt{3}$.

More room, if necessary, for Problem 3.3.43.

Section 3.4-Mechanical Vibrations

3.4.1 - Determine the period and frequency of the simple harmonic motion of a $4-\mathrm{kg}$ mass on the end of a spring with spring constant $16 \mathrm{~N} / \mathrm{m}$.
3.4.5 - Assume that the differential equation of a simple pendulum of length L is $L \theta^{\prime \prime}+g \theta=0$, where $g=G M / R^{2}$ is the gravitational acceleration at the location of the pendulum (at distance R from the center of the earth; M denotes the mass of the earth).

Two pendulums are of lengths L_{1} and L_{2} and - when located at the respective distances R_{1} and R_{2} from the center of the earth - have periods p_{1} and p_{2}. Show that

$$
\frac{p_{1}}{p_{2}}=\frac{R_{1} \sqrt{L_{1}}}{R_{2} \sqrt{L_{2}}}
$$

3.4.18 - A mass m is attached to both a spring (with spring constant k) and a dashpot (with dampring constant c). The mass is set in motion with initial position x_{0} and initial velocity v_{0}. Find the position function $x(t)$ and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdamped, write the position function in the form $x(t)=C_{1} e^{-p t} \cos \left(\omega_{1} t-\alpha_{1}\right)$. Also, find the undamped position function $u(t)=C_{0} \cos \left(\omega_{0} t-\alpha_{0}\right)$ that would result if the mass on the spring were set in motion with the same initial position and velocity, but with the dashpot disconnected (so $c=0$). Finally, construct a figure that illustrates the effect of damping by comparing the graphs of $x(t)$ and $u(t)$.

$$
\begin{gathered}
m=2, \quad c=12, \quad k=50, \\
x_{0}=0, \quad v_{0}=-8 .
\end{gathered}
$$

More room, if necessary, for Problem 3.4.18.
3.4.21 - Same as problem 3.4.18, except with the following values:

$$
\begin{gathered}
m=1, \quad c=10, \quad k=125 \\
x_{0}=6, \quad v_{0}=50 .
\end{gathered}
$$

More room, if necessary, for Problem 3.4.21.

Section 3.5 - Nonhomogeneous Equations and Undetermined Coefficients

3.5.1 - Find a particular solution, y_{p}, to the differential equation

$$
y^{\prime \prime}+16 y=e^{3 x} .
$$

3.5.11 - Find a particular solution, y_{p}, to the differential equation

$$
y^{(3)}+4 y^{\prime}=3 x-1
$$

3.5.23 - Set up the appropriate form of a particular solution y_{p}, but do not determine the values of the coefficients. ${ }^{1}$

$$
y^{\prime \prime}+4 y=3 x \cos 2 x
$$

[^0]3.5.28 - Same instructions as Problem 3.5.23, but with the differential equation
$$
y^{(4)}+9 y^{\prime \prime}=\left(x^{2}+1\right) \sin 3 x .
$$
3.5.35 - Solve the initial value problem
\[

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+2 y=x+1 \\
y(0)=3, \quad y^{\prime}(0)=0
\end{gathered}
$$
\]

3.5.47 - Use the method of variation of parameters to find a particular solution to the differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{x} .
$$

3.5.56 - Same instructions as Problem 3.5.47, but with the differential equation

$$
y^{\prime \prime}-4 y=x e^{x}
$$

Section 3.6 - Forced Oscillations and Resonance

3.6.1 - Express the solution of the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+9 x=10 \cos 2 t \\
x(0)=x^{\prime}(0)=0
\end{gathered}
$$

as a sum of two oscillations in the form:

$$
x(t)=C \cos \left(\omega_{0} t-\alpha\right)+\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}} \cos \omega t
$$

3.6.2 - Same instructions as Problem 3.6.1, but with the initial value problem:

$$
\begin{gathered}
x^{\prime \prime}+4 x=5 \sin 3 t \\
x(0)=x^{\prime}(0)=0 .
\end{gathered}
$$

3.6.9 - Find the steady periodic solution $x_{s p}(t)=C \cos (\omega t-\alpha)$ of the given equation $m x^{\prime \prime}+c x^{\prime}+k x=F(t)$ with periodic forcing function $F(t)$ of frequency ω. Then graph $x_{s p}(t)$ together with (for comparison) the adjusted forcing function $F_{1}(t)=F(t) / m \omega$.

$$
2 x^{\prime \prime}+2 x^{\prime}+x=3 \sin 10 t
$$

More space, if necessary, for Problem 3.6.9.
3.6.17 - Suppose we have a forced mass-spring-dashpot system with equation:

$$
x^{\prime \prime}+6 x^{\prime}+45 x=50 \cos \omega t
$$

Investigate the possibility of practical resonance of this system. In particular, find the amplitude $C(\omega)$ of steady periodic forced oscillations with frequency ω. Sketch the graph of $C(\omega)$ and find the practical resonance frequency ω (if any).
3.6.24 - A mass on a spring without damping is acted on by the external force $F(t)=F_{0} \cos ^{3} \omega t$. Show that there are two values of ω for which resonance occurs, and find both.

[^0]: ${ }^{1}$ Unless you really, really want to.

