Math 2280 - Assignment 4

Dylan Zwick

Spring 2013

Section 2.4-1, 5, 9, 26, 30
Section 3.1-1, 16, 18, 24, 39
Section 3.2 - 1, 10, 16, 24, 31

Section 2.4 - Numerical Approximation: Euler's Method

2.4.1 Apply Euler's method twice to approximate the solution to the initial value problem below on the interval [$0, \frac{1}{2}$], first with step size $h=.25$, then with step size $h=0.1$. Compare the three-decimal-place values of the two approximations at $x=\frac{1}{2}$ with the value $y\left(\frac{1}{2}\right)$ of the actual solution, also given below.

$$
\begin{gathered}
y^{\prime}=-y \\
y(0)=2 \\
y(x)=2 e^{-x}
\end{gathered}
$$

2.4.5 Apply Euler's method twice to approximate the solution to the initial value problem below on the interval $\left[0, \frac{1}{2}\right]$, first with step size $h=.25$, then with step size $h=0.1$. Compare the three-decimal-place values of the two approximations at $x=\frac{1}{2}$ with the value $y\left(\frac{1}{2}\right)$ of the actual solution, also given below.

$$
\begin{gathered}
y^{\prime}=y-x-1 \\
y(0)=1 \\
y(x)=2+x-e^{x}
\end{gathered}
$$

2.4.9 Apply Euler's method twice to approximate the solution to the initial value problem below on the interval [$0, \frac{1}{2}$], first with step size $h=.25$, then with step size $h=0.1$. Compare the three-decimal-place values of the two approximations at $x=\frac{1}{2}$ with the value $y\left(\frac{1}{2}\right)$ of the actual solution, also given below.

$$
\begin{gathered}
y^{\prime}=\frac{1}{4}\left(1+y^{2}\right) \\
y(0)=1 \\
y(x)=\tan \left(\frac{1}{4}(x+\pi)\right) .
\end{gathered}
$$

2.4.26 Suppose the deer population $P(t)$ in a small forest initially numbers 25 and satisfies the logistic equation

$$
\frac{d P}{d t}=0.0225 P-0.0003 P^{2}
$$

(with t in months.) Use Euler's method with a programmable calculator or computer to approximate the solution for 10 years, first with step size $h=1$ and then with $h=.5$, rounding off approximate P values to integrals numbers of deer. What percentage of the limiting population of 75 deer has been attained after 5 years? After 10 years?

More room for problem 2.4.26.
2.4.30 Apply Euler's method with successively smaller step sizes on the interval $[0,2]$ to verify empirically that the solution of the initial value problem

$$
\frac{d y}{d x}=y^{2}+x^{2}, \quad y(0)=0
$$

has vertical asymptote near $x=2.003147$.

More room for problem 2.4.30.

Section 3.1 - Second-Order Linear Equations

3.1.1 Verify that the functions y_{1} and y_{2} given below are solutions to the second-order ODE also given below. Then, find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ that satisfies the given initial conditions. Primes denote derivatives with respect to x.

$$
\begin{gathered}
y^{\prime \prime}-y=0 \\
y_{1}=e^{x} \quad y_{2}=e^{-x} \\
y(0)=0 \quad y^{\prime}(0)=5
\end{gathered}
$$

3.1.16 Verify that the functions y_{1} and y_{2} given below are solutions to the second-order ODE also given below. Then, find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ that satisfies the given initial conditions. Primes denote derivatives with respect to x.

$$
\begin{gathered}
x^{2} y^{\prime \prime}+x y^{\prime}+y=0 ; \\
y_{1}=\cos (\ln x), \quad y_{2}=\sin (\ln x) ; \\
y(1)=2, \quad y^{\prime}(1)=3 .
\end{gathered}
$$

3.1.18 Show that $y=x^{3}$ is a solution of $y y^{\prime \prime}=6 x^{4}$, but that if $c^{2} \neq 1$, then $y=c x^{3}$ is not a solution.

3.1.24 Determine if the functions

$$
f(x)=\sin ^{2} x, \quad g(x)=1-\cos (2 x)
$$

are linearly dependent on the real line \mathbb{R}.
3.1.30 (a) Show that $y_{1}=x^{3}$ and $y_{2}=\left|x^{3}\right|$ are linearly independent solutions on the real line of the equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$.
(b) Verify that $W\left(y_{1}, y_{2}\right)$ is identically zero. Why do these facts not contradict Theorem 3 from the textbook?

Section 3.2 - General Solutions of Linear Equations

3.2.1 Show directly that the given functions are linearly dependent on the real line. That is, find a non-trivial linear combination of the given functions that vanishes identically.

$$
f(x)=2 x, \quad g(x)=3 x^{2}, \quad h(x)=5 x-8 x^{2} .
$$

3.2.10 Use the Wronskian to prove that the given functions are linearly independent.

$$
f(x)=e^{x}, \quad g(x)=x^{-2}, \quad h(x)=x^{-2} \ln x ; x>0 .
$$

3.2.16 Find a particular solution to the third-order homogeneous linear equation given below, using the three linearly independent solutions given below.

$$
\begin{gathered}
y^{(3)}-5 y^{\prime \prime}+8 y^{\prime}-4 y=0 \\
y(0)=1, \quad y^{\prime}(0)=4, \quad y^{\prime \prime}(0)=0 \\
y_{1}=e^{x}, \quad y_{2}=e^{2 x}, \quad y_{3}=x e^{2 x}
\end{gathered}
$$

3.2.24 Find a solution satisfying the given initial conditions for the differential equation below. A complementary solution y_{c}, and a particular solution y_{p} are given.

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+2 y=2 x \\
y(0)=4 \quad y^{\prime}(0)=8 \\
y_{c}=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x \quad y_{p}=x+1 .
\end{gathered}
$$

3.2.31 This problem indicates why we can impose only n initial conditions on a solution of an n th-order linear differential equation.
(a) Given the equation

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

explain why the value of $y^{\prime \prime}(a)$ is determined by the values of $y(a)$ and $y^{\prime}(a)$.
(b) Prove that the equation

$$
y^{\prime \prime}-2 y^{\prime}-5 y=0
$$

has a solution satisfying the conditions

$$
y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=C
$$

if and only if $C=5$.

More room for problem 3.2.31.

