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Section 2.1 - 1, 8, 11, 16, 29

Section 2.2 - 1, 10, 21, 23, 24

Section 2.3 - 1, 2, 4, 10, 24
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Section 2.1 - Population Models

2.1.1 Separate variables and use partial fractions to solve the initial value
problem:

dx

dt
= x − x2 x(0) = 2.
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More space, if necessary, for problem 2.1.1.
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2.1.8 Separate variables and use partial fractions to solve the initial value
problem:

dx

dt
= 7x(x − 13) x(0) = 17.
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More space, if necessary, for problem 2.1.8.
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2.1.11 Suppose that when a certain lake is stocked with fish, the birth and

death rates β and δ are both inversely proportional to
√

P .

(a) Show that

P (t) =

(

1

2
kt +

√

P0

)

2

.

(b) If P0 = 100 and after 6 months there are 169 fish in the lake, how
many will there be after 1 year?
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More space, if necessary, for problem 2.1.11.
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2.1.16 Consider a rabbit population P (t) satisfying the logistic equation
dP/dt = aP − bP 2. If the initial population is 120 rabbits and there
are 8 births per month and 6 deaths per month occuring at time t = 0,
how many months does it take for P (t) to reach 95% of the limiting
population M?
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More space, if necessary, for problem 2.1.16.
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2.1.29 During the period from 1790 to 1930 the U.S. population P (t) (t in
years) grew from 3.9 million to 123.2 million. Throughout this pe-
riod, P (t) remained close to the solution of the initial value problem

dP

dt
= 0.03135P − 0.0001489P 2, P (0) = 3.9.

(a) What 1930 population does this logistic equation predict?

(b) What limiting population does it predict?

(c) Has this logistic equation continued since 1930 to accurately model
the U.S. population?

[This problem is based on the computation by Verhulst, who in 1845
used the 1790-1840 U.S. population data to predict accurately the
U.S. population through the year 1930 (long after his own death, of
course).]
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More space, if necessary, for problem 2.1.29.
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Section 2.2 - Equilibrium Solutions and Stability

2.2.1 - Find the critical points of the autonomous equation

dx

dt
= x − 4.

Then analyze the sign of the equation to determine whether each
critical point is stable or unstable, and construct the corresponding
phase diagram for the differential equation. Next, solve the differ-
ential equation explicitly for x(t) in terms of t. Finally, use either the
exact solution or a computer-generated slope field to sketch typical
solution curves for the given differential equation, and verify visu-
ally the stability of each critical point.
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More space, if necessary, for problem 2.2.1.
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2.2.10 Find the critical points of the autonomous equation

dx

dt
= 7x − x2 − 10.

Then analyze the sign of the equation to determine whether each
critical point is stable or unstable, and construct the corresponding
phase diagram for the differential equation. Next, solve the differ-
ential equation explicitly for x(t) in terms of t. Finally, use either the
exact solution or a computer-generated slope field to sketch typical
solution curves for the given differential equation, and verify visu-
ally the stability of each critical point.
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More space, if necessary, for problem 2.2.10.
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2.2.21 Consider the differential equation dx/dt = kx − x3.

(a) If k ≤ 0, show that the only critical value c = 0 of x is stable.

(b) If k > 0, show that the critical point c = 0 is now unstable, but

that the critical points c = ±
√

k are stable. Thus the qualitative
nature of the solutions changes at k = 0 as the parameter k in-
creases, and so k = 0 is a bifurcation point for the differential
equation with parameter k.

The plot of all points of the form (k, c) where c is a critical point of
the equation x′ = kx − x3 is the “pitchform diagram” show in figure
2.2.13 of the textbook.
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More space, if necessary, for problem 2.2.21.
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2.2.23 Suppose that the logistic equation dx/dt = kx(M−x) models a pop-
ulation x(t) of fish in a lake after t months during which no fishing
occurs. Now suppose that, because of fishing, fish are removed from
the lake at a rate of hx fish per month (with h a positive constant).
Thus fish are “harvested” at a rate proportional to the existing fish
population, rather than at the constant rate of Example 4 from the
textbook.

(a) If 0 < h < kM , show that the population is still logistic. What is
the new limiting population?

(b) If h ≥ kM , show that x(t) → 0 as t → ∞, so the lake is eventually
fished out.
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More space, if necessary, for problem 2.2.23.
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2.2.24 Separate variables in the logistic harvesting equation

dx/dt = k(N − x)(x − H)

and then use partial fractions to derive the solution given in equation
15 of the textbook (also appearing in the lecture notes).
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More space, if necessary, for problem 2.2.24.
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Section 2.3 - Acceleration-Velocity Models

2.3.1 The acceleration of a Maserati is proportional to the difference be-
tween 250 km/h and the velocity of this sports car. If the machine
can accelerate from rest to 100 km/h in 10s, how long will it take for
the car to accelerate from rest to 200 km/h?
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More space, if necessary, for problem 2.3.1.
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2.3.2 Suppose that a body moves through a resisting medium with resis-
tance proportional to its velocity v, so that dv/dt = −kv.

(a) Show that its velocity and position at time t are given by

v(t) = v0e
−kt

and

x(t) = x0 +
(v0

k

)

(1 − e−kt).

(b) Conclude that the body travels only a finite distance, and find
that distance.
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More space, if necessary, for problem 2.3.2.
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2.3.4 Consider a body that moves horizontally through a medium whose
resistance is proportional to the square of the velocity v, so that

dv/dt = −kv2.

Show that

v(t) =
v0

1 + v0kt

and that

x(t) = x0 +
1

k
ln (1 + v0kt).

Note that, in contrast with the result of Problem 2, x(t) → ∞ as
t → ∞. Which offers less resistance when the body is moving fairly
slowly - the medium in this problem or the one in Problem 2? Does
your answer seem to be consistent with the observed behaviors of
x(t) as t → ∞?
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More space, if necessary, for problem 2.3.4.
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2.3.10 A woman bails out of an airplane at an altitude of 10,000 ft, falls
freely for 20s, then opens her parachute. How long will it take her
to reach the ground? Assume linear air resistance ρv ft/s2, taking
ρ = .15 without the parachute and ρ = 1.5 with the parachute. (Sug-
gestion: First determine her height above the ground and velocity
when the parachute opens.)
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More space, if necessary, for problem 2.3.10.

29



2.3.24 The mass of the sun is 329,320 times that of the earth and its radius
is 109 times the radius of the earth.

(a) To what radius (in meters) would the earth have to be compressed
in order for it to become a black hole - the escape velocity from
its surface equal to the velocity c = 3 × 108m/s of light?

(b) Repeat part (a) with the sun in place of the earth.
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