Math 2280 - Assignment 14

Dylan Zwick

Spring 2013

Section 9.4 - 1, 2, 3, 19, 20 Section 9.5 - 1, 3, 5, 7, 9 Section 9.6 - 1, 3, 5, 7, 14

Section 9.4 - Applications of Fourier Series

9.4.1 - Find the steady periodic solution, $x_{sp}(t)$, of the differential equation below.

$$x'' + 5x = F(t),$$

where F(t) is the function of period 2π such that F(t) = 3 if $0 < t < \pi$, and F(t) = -3 if $\pi < t < 2\pi$. **9.4.2** - Find the steady periodic solution, $x_{sp}(t)$, of the differential equation below.

$$x'' + 10x = F(t),$$

where F(t) is the even function of period 4 such that F(t) = 3 if 0 < t < 1, and F(t) = -3 if 1 < t < 2.

9.4.3 - Find the steady periodic solution, $x_{sp}(t)$, of the differential equation below.

$$x'' + 3x = F(t),$$

where F(t) is the odd function of period 2π such that F(t) = 2t if $0 < t < \pi$.

9.4.19 - Suppose the functions f(t) and g(t) are periodic with periods P and Q respectively. If the ratio P/Q of their periods is a rational number, show that the sum f(t) + g(t) is a periodic function.

9.4.20 - If p/q is irrational, prove that the function $f(t) = \cos pt + \cos qt$ is not a periodic function. *Suggestions*: Show that the assumption f(t + L) = f(t) would (upon substituting t = 0) imply that p/q is rational.

Section 9.5 - Heat Conduction and Separation of Variables

9.5.1 - Solve the boundary value problem $u_t = 3u_{xx}$, $0 < x < \pi$, t > 0; $u(0,t) = u(\pi,t) = 0$, $u(x,0) = 4\sin 2x$.

9.5.3 - Solve the boundary value problem $u_t = 2u_{xx}$, 0 < x < 1, t > 0; u(0,t) = u(1,t) = 0, $u(x,0) = 5 \sin \pi x - \frac{1}{5} \sin 3\pi x$.

9.5.5 - Solve the boundary value problem $u_t = 2u_{xx}$, 0 < x < 3, t > 0; $u_x(0,t) = u_x(3,t) = 0$, $u(x,0) = 4\cos\frac{2}{3}\pi x - 2\cos\frac{4}{3}\pi x$.

9.5.7 - Solve the boundary value problem $3u_t = u_{xx}$, 0 < x < 2, t > 0; $u_x(0,t) = u_x(2,t) = 0$, $u(x,0) = \cos^2 2\pi x$.

9.5.9 - Solve the boundary value problem $10u_t = u_{xx}$, 0 < x < 5, t > 0; u(0,t) = u(5,t) = 0, u(x,0) = 25.

Section 9.6 - Vibrating Strings and the One-Dimensional Wave Equation

9.6.1 - Solve the boundary value problem $y_{tt} = 4y_{xx}$, $0 < x < \pi$, t > 0; $y(0,t) = y(\pi,t) = 0$, $y(x,0) = \frac{1}{10} \sin 2x$, $y_t(x,0) = 0$.

9.6.3 - Solve the boundary value problem $4y_{tt} = y_{xx}$, $0 < x < \pi$, t > 0; $y(0,t) = y(\pi,t) = 0$, $y(x,0) = y_t(x,0) = \frac{1}{10} \sin x$.

9.6.5 - Solve the boundary value problem $y_{tt} = 25y_{xx}$, 0 < x < 3, t > 0; y(0,t) = y(3,t) = 0, $y(x,0) = \frac{1}{4}\sin \pi x$, $y_t(x,0) = 10\sin 2\pi x$.

9.6.7 - Solve the boundary value problem $y_{tt} = 100y_{xx}$, 0 < x < 1, t > 0; y(0,t) = y(1,t) = 0, y(x,0) = 0, $y_t(x,0) = x$.

9.6.14 - Given the differentiable odd period 2L function F(x), show that the function

$$y(x,t) = \frac{1}{2}[F(x+at) + F(x-at)]$$

satisfies the conditions y(0,t) = y(L,t) = 0, y(x,0) = F(x), and $y_t(x,0) = 0$.