Math 2280 - Assignment 14

Dylan Zwick

Spring 2013

Section 9.4-1, 2, 3, 19, 20
Section 9.5-1, 3, 5, 7, 9
Section 9.6-1, 3, 5, 7, 14

Section 9.4 - Applications of Fourier Series

9.4.1 - Find the steady periodic solution, $x_{s p}(t)$, of the differential equation below.

$$
x^{\prime \prime}+5 x=F(t),
$$

where $F(t)$ is the function of period 2π such that $F(t)=3$ if $0<t<\pi$, and $F(t)=-3$ if $\pi<t<2 \pi$.
9.4.2 - Find the steady periodic solution, $x_{s p}(t)$, of the differential equation below.

$$
x^{\prime \prime}+10 x=F(t),
$$

where $F(t)$ is the even function of period 4 such that $F(t)=3$ if $0<t<1$, and $F(t)=-3$ if $1<t<2$.
9.4.3 - Find the steady periodic solution, $x_{s p}(t)$, of the differential equation below.

$$
x^{\prime \prime}+3 x=F(t)
$$

where $F(t)$ is the odd function of period 2π such that $F(t)=2 t$ if $0<t<\pi$.
9.4.19 - Suppose the functions $f(t)$ and $g(t)$ are periodic with periods P and Q respectively. If the ratio P / Q of their periods is a rational number, show that the sum $f(t)+g(t)$ is a periodic function.
9.4.20 - If p / q is irrational, prove that the function $f(t)=\cos p t+\cos q t$ is not a periodic function. Suggestions: Show that the assumption $f(t+L)=f(t)$ would (upon substituting $t=0$) imply that p / q is rational.

Section 9.5 - Heat Conduction and Separation of Variables

9.5.1 - Solve the boundary value problem $u_{t}=3 u_{x x}, 0<x<\pi, t>0$; $u(0, t)=u(\pi, t)=0, u(x, 0)=4 \sin 2 x$.
9.5.3 - Solve the boundary value problem $u_{t}=2 u_{x x}, 0<x<1, t>0$; $u(0, t)=u(1, t)=0, u(x, 0)=5 \sin \pi x-\frac{1}{5} \sin 3 \pi x$.
9.5.5 - Solve the boundary value problem $u_{t}=2 u_{x x}, 0<x<3, t>0$; $u_{x}(0, t)=u_{x}(3, t)=0, u(x, 0)=4 \cos \frac{2}{3} \pi x-2 \cos \frac{4}{3} \pi x$.
9.5.7 - Solve the boundary value problem $3 u_{t}=u_{x x}, 0<x<2, t>0$; $u_{x}(0, t)=u_{x}(2, t)=0, u(x, 0)=\cos ^{2} 2 \pi x$.
9.5.9 - Solve the boundary value problem $10 u_{t}=u_{x x}, 0<x<5, t>0$; $u(0, t)=u(5, t)=0, u(x, 0)=25$.

Section 9.6 - Vibrating Strings and the One-Dimensional Wave Equation

9.6.1 - Solve the boundary value problem $y_{t t}=4 y_{x x}, 0<x<\pi, t>0$; $y(0, t)=y(\pi, t)=0, y(x, 0)=\frac{1}{10} \sin 2 x, y_{t}(x, 0)=0$.
9.6.3 - Solve the boundary value problem $4 y_{t t}=y_{x x}, 0<x<\pi, t>0$; $y(0, t)=y(\pi, t)=0, y(x, 0)=y_{t}(x, 0)=\frac{1}{10} \sin x$.
9.6.5 - Solve the boundary value problem $y_{t t}=25 y_{x x}, 0<x<3, t>0$; $y(0, t)=y(3, t)=0, y(x, 0)=\frac{1}{4} \sin \pi x, y_{t}(x, 0)=10 \sin 2 \pi x$.
9.6.7 - Solve the boundary value problem $y_{t t}=100 y_{x x}, 0<x<1, t>0$; $y(0, t)=y(1, t)=0, y(x, 0)=0, y_{t}(x, 0)=x$.
9.6.14 - Given the differentiable odd period $2 L$ function $F(x)$, show that the function

$$
y(x, t)=\frac{1}{2}[F(x+a t)+F(x-a t)]
$$

satisfies the conditions $y(0, t)=y(L, t)=0, y(x, 0)=F(x)$, and $y_{t}(x, 0)=0$.

