Math 2280 - Assignment 13

Dylan Zwick
Spring 2013

Section 9.1-1, 8, 11, 13, 21
Section 9.2-1, 9, 15, 17, 20
Section 9.3-1,5, 8, 13, 20

Section 9.1 - Periodic Functions and Trigonometric Series

9.1.1 - Sketch the graph of the function f defined for all t by the given formula, and determine whether it is periodic. If so, find its smallest period.

$$
f(t)=\sin 3 t
$$

9.1.8 - Sketch the graph of the function f defined for all t by the given formula, and determine whether it is periodic. If so, find its smallest period.

$$
f(t)=\sinh \pi t
$$

9.1.11 - The value of a period 2π function $f(t)$ in one full period is given below. Sketch several periods of its graph and find its Fourier series.

$$
f(t)=1, \quad-\pi \leq t \leq \pi
$$

9.1.13 - The value of a period 2π function $f(t)$ in one full period is given below. Sketch several periods of its graph and find its Fourier series.

$$
f(t)=\left\{\begin{array}{cc}
0 & -\pi<t \leq 0 \\
1 & 0<t \leq \pi
\end{array}\right.
$$

9.1.21 - The value of a period 2π function $f(t)$ in one full period is given below. Sketch several periods of its graph and find its Fourier series.

$$
f(t)=t^{2}, \quad-\pi \leq t<\pi
$$

Section 9.2 - General Fourier Series and Convergence

9.2.1 - The values of a periodic function $f(t)$ in one full period are given below; at each discontinuity the value of $f(t)$ is that given by the average value condition. Sketch the graph of f and find its Fourier series.

$$
f(t)=\left\{\begin{array}{cc}
-2 & -3<t<0 \\
2 & 0<t<3
\end{array}\right.
$$

9.2.9 - The values of a periodic function $f(t)$ in one full period are given below; at each discontinuity the value of $f(t)$ is that given by the average value condition. Sketch the graph of f and find its Fourier series.

$$
f(t)=t^{2}, \quad-1<t<1
$$

9.2.15 -

(a) - Suppose that f is a function of period 2π with $f(t)=t^{2}$ for $0<t<2 \pi$. Show that

$$
f(t)=\frac{4 \pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{\cos n t}{n^{2}}-4 \pi \sum_{n=1}^{\infty} \frac{\sin n t}{n}
$$

and sketch the graph of f, indicating the value at each discontinuity.
(b) - Deduce the series summations

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

and

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

from the Fourier series in part (a).

More room for Problem 9.2.15, if you need it.

9.2.17 -

(a) - Supose that f is a funciton of period 2 with $f(t)=t$ for $0<t<$ 2. Show that

$$
f(t)=1-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n \pi t}{n}
$$

and sketch the graph of f, indicating the value at each discontinuity.
(b) - Substitute an appropriate value of t to deduce Leibniz's series

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}
$$

More room for Problem 9.2.17, if you need it.
9.2.20 - Derive the Fourier series given below, and graph the period 2π function to which the series converges.

$$
\sum_{n=1}^{\infty} \frac{\cos n t}{n^{2}}=\frac{3 t^{2}-6 \pi t+2 \pi^{2}}{12} \quad(0<t<2 \pi)
$$

Section 9.3 - Fourier Sine and Cosine Series

9.3.1 - For the given function $f(t)$ defined on the given interval find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge.

$$
f(t)=1, \quad 0<t<\pi .
$$

More room for Problem 9.3.1, if you need it.
9.3.5 - For the given function $f(t)$ defined on the given interval find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge.

$$
f(t)= \begin{cases}0 & 0<t<1 \\ 1 & 1<t<2 \\ 0 & 2<t<3\end{cases}
$$

More room for Problem 9.3.5, if you need it.
9.3.8 - For the given function $f(t)$ defined on the given interval find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge.

$$
f(t)=t-t^{2}, \quad 0<t<1
$$

More room for Problem 9.3.8, if you need it.
9.3.13 - Find a formal Fourier series solution to the endpoint value problem

$$
x^{\prime \prime}+x=t \quad x(0)=x(1)=0
$$

More room for Problem 9.3.13, if you need it.
9.3.20 - Substitute $t=\pi / 2$ and $t=\pi$ in the series

$$
\frac{1}{24} t^{4}=\frac{\pi^{2} t^{2}}{12}-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}} \cos n t+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}, \quad-\pi<t<\pi
$$

to obtain the summations

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}=\frac{7 \pi^{4}}{720} \\
\text { and } \\
1+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\cdots=\frac{\pi^{4}}{96}
\end{gathered}
$$

More room for Problem 9.3.20, if you need it.

