Math 2280 - Assignment 12

Dylan Zwick
Spring 2013

Section 8.3-1, 8, 15, 18, 24
Section 8.4 -1, 6, 8, 9, 14

Section 8.3 - Regular Singular Points

8.3.1 - Determine whether $x=0$ is an ordinary point, a regular singular point, or an irregular singular point for the differential equation

$$
x y^{\prime \prime}+\left(x-x^{3}\right) y^{\prime}+(\sin x) y=0 .
$$

If it is a regular singular point, find the exponents of the differential equation (the solutions to the indicial equation) at $x=0$.
8.3.8 - Determine whether $x=0$ is an ordinary point, a regular singular point, or an irregular singular point for the differential equation

$$
\left(6 x^{2}+2 x^{3}\right) y^{\prime \prime}+21 x y^{\prime}+9\left(x^{2}-1\right) y=0 .
$$

If it is a regular singular point, find the exponents of the differential equation (the solutions to the indicial equation) at $x=0$.
8.3.15 - If $x=a \neq 0$ is a singular point of a second-order linear differential equation, then the substitution $t=x-a$ transforms it into a differential equation having $t=0$ as a singular point. We then attribute to the original equation at $x=a$ the behavior of the new equation at $t=0$. Classify (as regular or irregular) the singular points of the differential equation

$$
(x-2)^{2} y^{\prime \prime}-\left(x^{2}-4\right) y^{\prime}+(x+2) y=0
$$

8.3.18 - Find two linearly independent Frobenius series solutions (for $x>$ 0) to the differential equation

$$
2 x y^{\prime \prime}+3 y^{\prime}-y=0
$$

More room for Problem 8.3.18, if you need it.
8.3.24 - Find two linearly independent Frobenius series solutions (for $x>$ 0) to the differential equation

$$
3 x^{2} y^{\prime \prime}+2 x y^{\prime}+x^{2} y=0 .
$$

More room for Problem 8.3.24, if you need it.

Section 8.4 - Method of Frobenius: The Exceptional Cases

8.4.1 - Either apply the method from Example 1 in the textbook to find two linearly independent Frobenius series solutions, or find one such solution and show (as in Example 2 from the textbook) that a second such solution does not exist for the differential equation:

$$
x y^{\prime \prime}+(3-x) y^{\prime}-y=0 .
$$

More room for Problem 8.4.1, if you need it.
8.4.6 - Either apply the method from Example 1 in the textbook to find two linearly independent Frobenius series solutions, or find one such solution and show (as in Example 2 from the textbook) that a second such solution does not exist for the differential equation:

$$
2 x y^{\prime \prime}-(6+2 x) y^{\prime}+y=0 .
$$

More room for Problem 8.4.6, if you need it.
8.4.8 - Either apply the method from Example 1 in the textbook to find two linearly independent Frobenius series solutions, or find one such solution and show (as in Example 2 from the textbook) that a second such solution does not exist for the differential equation:

$$
x(1-x) y^{\prime \prime}-3 y^{\prime}+2 y=0 .
$$

More room for Problem 8.4.8, if you need it.

8.4.9 - For the differential equation

$$
x y^{\prime \prime}+y^{\prime}-x y=0,
$$

first find the first four nonzero terms in a Frobenius series solution. Then use the reduction of order technique to find the logarithmic term and the first three nonzero terms in a second linearly independent solution.

More room for Problem 8.4.9, if you need it.
8.4.14 - For the differential equation

$$
x^{2} y^{\prime \prime}+x(1+x) y^{\prime}-4 y=0,
$$

first find the first four nonzero terms in a Frobenius series solution. Then use the reduction of order technique to find the logarithmic term and the first three nonzero terms in a second linearly independent solution.

More room for Problem 8.4.14, if you need it.

