Math 2280 - Assignment 11

Dylan Zwick
Spring 2013

Section 8.1 - 2, 8, 13, 21, 25
Section 8.2 -1, 7, 14, 17, 32

Section 8.1 - Introduction and Review of Power Series

8.1.2 - Find the power series solution to the differential equation

$$
y^{\prime}=4 y
$$

and determine the radius of convergence for the series. Also, identify the series solution in terms of familiar elementary functions.

More room for Problem 8.1.2, if you need it.
8.1.8 - Find the power series solution to the differential equation

$$
2(x+1) y^{\prime}=y
$$

and determine the radius of convergence for the series. Also, identify the series solution in terms of familiar elementary functions.

More room for Problem 8.1.8, if you need it.
8.1.13 - Find two linearly independent power series solutions to the differential equation

$$
y^{\prime \prime}+9 y=0
$$

and determine the radius of convergence for each series. Also, identify the general solution in terms of familiar elementary functions.

More room for Problem 8.1.13, if you need it.
8.1.21 - For the initial value problem

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+y=0 \\
y(0)=0, y^{\prime}(0)=1
\end{gathered}
$$

derive a recurrence relation giving c_{n} for $n \geq 2$ in terms of c_{0} or c_{1} (or both). Then apply the given initial conditions to find the values of c_{0} and c_{1}. Next, determine c_{n} and, finally, identify the particular solution in terms of familiar elementary functions.

More room for Problem 8.1.21, if you need it.

8.1.25 - For the initial value problem

$$
\begin{gathered}
y^{\prime \prime}=y^{\prime}+y \\
y(0)=0, \quad y^{\prime}(0)=1
\end{gathered}
$$

derive the power series solution

$$
y(x)=\sum_{n=1}^{\infty} \frac{F_{n}}{n!} x^{n}
$$

where $\left\{F_{n}\right\}_{n=0}^{\infty}$ is the sequence $0,1,1,2,3,5,8,13, \ldots$ of Fibonacci numbers defined by $F_{0}=0, F_{1}=1, F_{n}=F_{n-2}+F_{n-1}$ for $n>1$.

More room for Problem 8.1.25, if you need it.

Even more room for Problem 8.1.25, if you need it.

Section 8.2 - Series Solutions Near Ordinary Points

8.2.1 - Find a general solution in powers of x to the differential equation

$$
\left(x^{2}-1\right) y^{\prime \prime}+4 x y^{\prime}+2 y=0 .
$$

State the recurrence relation and the guaranteed radius of convergence.

More room for Problem 8.2.1, if you need it.
8.2.7 - Find a general solution in powers of x to the differential equation

$$
\left(x^{2}+3\right) y^{\prime \prime}-7 x y^{\prime}+16 y=0
$$

State the recurrence relation and the guaranteed radius of convergence.

More room for Problem 8.2.7, if you need it.
8.2.14 - Find a general solution in powers of x to the differential equation

$$
y^{\prime \prime}+x y=0 .{ }^{1}
$$

State the recurrence relation and the guaranteed radius of convergence.

[^0]More room for Problem 8.2.14, if you need it.
8.2.17 - Use power series to solve the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+x y^{\prime}-2 y=0 \\
y(0)=1, \quad y^{\prime}(0)=0
\end{gathered}
$$

More room for Problem 8.2.17, if you need it.
8.2.32 - Follow the steps outlined in this problem to establish Rodrigues's formula

$$
P_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

for the n th-degree Legendre polynomial.
(a) Show that $v=\left(x^{2}-1\right)^{n}$ satisfies the differential equation

$$
\left(1-x^{2}\right) v^{\prime}+2 n x v=0
$$

Differentiate each side of this equation to obtain

$$
\left(1-x^{2}\right) v^{\prime \prime}+2(n-1) x v^{\prime}+2 n v=0 .
$$

(b) Differentiate each side of the last equation n times in succession to obtain

$$
\left(1-x^{2}\right) v^{(n+2)}-2 x v^{(n+1)}+n(n+1) v^{(n)}=0
$$

Thus $u=v^{(n)}=D^{n}\left(x^{2}-1\right)^{n}$ satisfies Legendre's equation of order n.
(c) Show that the coefficient of x^{n} in u is $(2 n)!/ n!$; then state why this proves Rodrigues' formula. (Note that the coefficient of x^{n} in $P_{n}(x)$ is $\left.(2 n)!/\left[2^{n}(n!)^{2}\right].\right)$

More room for Problem 8.2.32, if you need it. You probably will.

Even more room for Problem 8.2.32, if you need it.

[^0]: ${ }^{1}$ An Airy equation.

