
Math 2280 - Assignment 10

Dylan Zwick

Spring 2013

Section 7.4 - 1, 5, 10, 19, 31

Section 7.5 - 1, 6, 15, 21, 26

Section 7.6 - 1, 6, 11, 14, 15
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Section 7.4 - Derivatives, Integrals, and Products

of Transforms

7.4.1 - Find the convolution f(t) ∗ g(t) of the functions

f(t) = t, g(t) = 1.
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7.4.5 - Find the convolution f(t) ∗ g(t) of the functions

f(t) = g(t) = eat.
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7.4.10 - Apply the convolution theorem to find the inverse Laplace trans-
form of the function

F (s) =
1

s2(s2 + k2)
.
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7.4.19 - Find the Laplace transform of the function

f(t) =
sin t

t
.
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7.4.31 - Transform the given differential equation to find a nontrivial so-
lution such that x(0) = 0.

tx′′
− (4t + 1)x′ + 2(2t + 1)x = 0.
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Section 7.5 - Periodic and Piecewise Continuous

Input Functions

7.5.1 - Find the inverse Laplace transform f(t) of the function

F (s) =
e−3s

s2
.
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7.5.6 - Find the inverse Laplace transform f(t) of the function

F (s) =
se−s

s2 + π2
.
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7.5.15 - Find the Laplace transform of the function

f(t) = sin t if 0 ≤ t ≤ 3π; f(t) = 0 if t > 3π.
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7.5.21 - Find the Laplace transform of the function

f(t) = t if t ≤ 1; f(t) = 2 − t if 1 ≤ t ≤ 2; f(t) = 0 if t > 2.
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7.5.26 - Apply Theorem 2 to show that the Laplace transform of the saw-
tooth function f(t) pictured below is

F (s) =
1

as2
−

e−as

s(1 − e−as)
.
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More room for Problem 7.5.26, if you need it.
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Inpulses and Delta Functions

7.6.1 - Solve the initial value problem

x′′ + 4x = δ(t);

x(0) = x′(0) = 0,

and graph the solution x(t).
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7.6.6 - Solve the initial value problem

x′′ + 9x = δ(t − 3π) + cos 3t;

x(0) = x′(0) = 0,

and graph the solution x(t).
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7.6.11 - Apply Duhamel’s principle to write an integral formula for the
solution of the initial value problem

x′′ + 6x′ + 8x = f(t);

x(0) = x′(0) = 0.
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7.6.14 - Verify that u′(t − a) = δ(t − a) by solving the problem

x′ = δ(t − a);

x(0) = 0

to obtain x(t) = u(t − a).
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7.6.15 - This problem deals with a mass m on a spring (with constant k)
that receives an impulse p0 = mv0 at time t = 0. Show that the initial
value problems

mx′′ + kx = 0;

x(0) = 0, x′(0) = v0

and

mx′′ + kx = p0δ(t);

x(0) = 0, x′(0) = 0

have the same solution. Thus the effect of p0δ(0) is, indeed, to impart
to the particle an initial momentum p0.
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More space, if you need it, for Problem 7.6.15.
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