Math 2280 - Assignment 10

Dylan Zwick

Spring 2013

Section 7.4-1,5,10, 19, 31
Section 7.5-1, 6, 15, 21, 26
Section 7.6-1, 6, 11, 14, 15

Section 7.4 - Derivatives, Integrals, and Products of Transforms

7.4.1 - Find the convolution $f(t) * g(t)$ of the functions

$$
f(t)=t, \quad g(t)=1
$$

7.4.5 - Find the convolution $f(t) * g(t)$ of the functions

$$
f(t)=g(t)=e^{a t}
$$

7.4.10 - Apply the convolution theorem to find the inverse Laplace transform of the function

$$
F(s)=\frac{1}{s^{2}\left(s^{2}+k^{2}\right)}
$$

7.4.19 - Find the Laplace transform of the function

$$
f(t)=\frac{\sin t}{t}
$$

7.4.31 - Transform the given differential equation to find a nontrivial solution such that $x(0)=0$.

$$
t x^{\prime \prime}-(4 t+1) x^{\prime}+2(2 t+1) x=0
$$

Section 7.5 - Periodic and Piecewise Continuous Input Functions

7.5.1 - Find the inverse Laplace transform $f(t)$ of the function

$$
F(s)=\frac{e^{-3 s}}{s^{2}}
$$

7.5.6 - Find the inverse Laplace transform $f(t)$ of the function

$$
F(s)=\frac{s e^{-s}}{s^{2}+\pi^{2}}
$$

7.5.15 - Find the Laplace transform of the function

$$
f(t)=\sin t \text { if } 0 \leq t \leq 3 \pi ; f(t)=0 \text { if } t>3 \pi .
$$

7.5.21 - Find the Laplace transform of the function

$$
f(t)=t \text { if } t \leq 1 ; f(t)=2-t \text { if } 1 \leq t \leq 2 ; f(t)=0 \text { if } t>2
$$

7.5.26 - Apply Theorem 2 to show that the Laplace transform of the sawtooth function $f(t)$ pictured below is

$$
F(s)=\frac{1}{a s^{2}}-\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}
$$

More room for Problem 7.5.26, if you need it.

Inpulses and Delta Functions

7.6.1 - Solve the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+4 x=\delta(t) \\
x(0)=x^{\prime}(0)=0
\end{gathered}
$$

and graph the solution $x(t)$.

7.6.6 - Solve the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+9 x=\delta(t-3 \pi)+\cos 3 t ; \\
x(0)=x^{\prime}(0)=0,
\end{gathered}
$$

and graph the solution $x(t)$.
7.6.11 - Apply Duhamel's principle to write an integral formula for the solution of the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+6 x^{\prime}+8 x=f(t) ; \\
x(0)=x^{\prime}(0)=0 .
\end{gathered}
$$

7.6.14 - Verify that $u^{\prime}(t-a)=\delta(t-a)$ by solving the problem

$$
\begin{gathered}
x^{\prime}=\delta(t-a) ; \\
x(0)=0
\end{gathered}
$$

to obtain $x(t)=u(t-a)$.
7.6.15 - This problem deals with a mass m on a spring (with constant k) that receives an impulse $p_{0}=m v_{0}$ at time $t=0$. Show that the initial value problems

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 ; \\
x(0)=0, x^{\prime}(0)=v_{0}
\end{gathered}
$$

and

$$
\begin{aligned}
& m x^{\prime \prime}+k x=p_{0} \delta(t) ; \\
& x(0)=0, x^{\prime}(0)=0
\end{aligned}
$$

have the same solution. Thus the effect of $p_{0} \delta(0)$ is, indeed, to impart to the particle an initial momentum p_{0}.

More space, if you need it, for Problem 7.6.15.

