1.) Find a parabola whose vertex is $(2,-3)$ opening down passing through the point $(0,-11)$.

$$
\begin{array}{ll}
y=a(x-2)^{2}-3 \quad \text { when } x=0 & y=-11 \text { so } \\
-11=a(-2)^{2}-3 \quad-11=4 a-3 & -8=4 a \quad-2=a \\
y=-2(x-2)^{2}-3 &
\end{array}
$$

2.) Graph $f(x)=x^{2}-8 x+16$ by identifying the y-intercepts, x-intercepts, and vertex.

$$
f(x)=(x-4)^{2} \quad \text { vertex at }(4,0)
$$

y-inter cept is 16. x-intercept is a repeated root af $x=4$.

3.) Describe the graph of $f(x)=(x-3)^{2}(x+2)^{3}$.

Zeros af $x=3, x=-2$
Sign change at $x=-2$
Touches $q x$-axis at $x=3$

$\lim _{\lim } x \rightarrow \infty \quad B \quad \infty$
$\operatorname{Lim}_{x \rightarrow-\infty} \quad$ is $-\infty$
4.) Sketch the graph of $f(x)=\frac{x^{2}-9}{x^{2}-2 x-3}$. Make sure you find the y-intercepts, x intercepts, vertical asymptotes, horizontal asymptotes, and some additional points.

$$
f(x)=\frac{(x+3)(x-3)}{(x-3)(x+1)}=\frac{x+3}{x+1} \quad \begin{aligned}
& \text { Vertical a a y mp tote } \\
& \text { at } x=-1
\end{aligned}
$$ y-intercept is $y=3$. x-intercept 1) $x=-3$.

 Linear asymptote
of $y=x$

$$
\text { of } y=x
$$

$$
\begin{aligned}
& \text { Pretty lame } \\
& \text { sketch, I } \\
& \text { know. }
\end{aligned}
$$

5.) Find the slanted asymptotes of $f(x)=\frac{x^{3}+2 x^{2}+4}{2 x^{2}+1}$. Why do we know it has a slanted asymptote?

$$
y=\frac{1}{2} x
$$

Because the degree of the numerator
is 1 greater than
the degree of the denominator.

