Refresher Course Math 1050 and 1060 Practice Problems Set 5 Fall 2007

1.) Find a parabola whose vertex is (2,-3) opening down passing through the point (0, -11).

$$y = a(x-2)^{2} - 3 \quad \text{when} \quad x = 0 \quad y = -11 \quad so$$

$$-11 = a(-2)^{2} - 3 \quad -11 = 4a - 3 \quad -8 = 4a \quad -2 = a$$

$$y = -2(x-2)^{2} - 3$$

2.) Graph $f(x) = x^2 - 8x + 16$ by identifying the y-intercepts, x-intercepts, and vertex.

3.) Describe the graph of $f(x) = (x-3)^2(x+2)^3$.

Zeros
$$a \neq x = 3, x = -2$$

Sign change $a \neq x = -2$
Touches $g(x-axi) = a \neq x = 3$
Lim $x \rightarrow \infty$ is ∞
Lim $x \rightarrow -\infty$ is $-\infty$

$$sign line
 $-2$$$

Refresher Course Math 1050 and 1060 Practice Problems Set 5 Fall 2007

4.) Sketch the graph of
$$f(x) = \frac{x^2 - 9}{x^2 - 2x - 3}$$
. Make sure you find the y-intercepts, x-
intercepts, vertical asymptotes, horizontal asymptotes, and some additional points.
$$\frac{f(x)}{f(x-3)} = \frac{(x+3)(x-3)}{(x-3)(x+1)} = \frac{x+3}{x+1}$$
Ver fical asymptote
 $a + x = -1$.
$$\frac{f(x)}{f(x-3)(x+1)} = \frac{x+3}{x+1}$$
Ver fical asymptote
 $a + x = -1$.
$$\frac{f(x)}{f(x-3)(x+1)} = \frac{x-1}{x+1}$$
User fical asymptote
 $f(x) = x$.
$$\frac{f(x)}{f(x-3)(x+1)} = \frac{x+3}{x+1}$$
Ver fical asymptote
 $f(x) = x$.
$$\frac{f(x)}{f(x)} = \frac{f(x)}{x+1}$$

$$\frac{f(x)}{f(x)} = \frac{f(x)}{2x^2+1}$$
We know it has a

slanted asymptote?

$$Y = \frac{1}{2} X$$