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This is my sample writeup for our second class project. Your writeup
obviously doesn’t need to be exactly like this, but it should contain more
or less the same information.

1 Derivation of Kepler’s First and Second Laws

from Newton’s Law of Universal Gravitation

Kepler’s three laws of planetary motion state:

1. The orbit of each planet is an ellipse with the sun at one focus.

2. The radius vector from the sun to each planet sweeps out area at a
constant rate.

3. The square of the planet’s period of revolution is proportional to the
cube of the major semiaxis of its elliptical orbit.

In Newton’s great book Principia Mathematica (1687) he derived his law
of universal gravitation based upon Kepler’s laws. In this project we’re go-
ing to go the other way, essentially proving that Newton’s law of universal
gravitation is equivalent to Kepler’s laws, in terms of planetary motion at
least.
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1.1 Preliminaries

For this derivation we will assume that the sun is located at the origin in
the plane of motion of a planet. We’re assuming that we’re dealing with a
radial force, and so it’s OK to assume that the planet’s motion takes place
in a plane. In this case we can write the position vector of the planet in
cartesian form as:

r(t) = x(t)i + y(t)j.

where i and j are the unit vectors in the x and y coordinates, respec-
tively.

Newton’s law of universal gravitation states that:

F = −
Gm1m2

r2
u.

Where F is the force upon the orbiting planet, G is Newton’s universal
gravitational constant, m1 is the mass of the sun, m2 is the mass of the

planet, r =
√

x2 + y2 is the distance from the sun to the planet, and u is a
unit vector that points from the sun at the origin towards the planet. We
note that G and m1 are both constants, and so we can write their product
as k. We also define r = ru. We finally note that Newton’s second law of
motion states that F = m2r′′. If we make these substitutions and simplify
we get the relation:

r′′ = −
kr

r3
.

If we switch to polar coordinates, then the radial and transverse unit
vectors are given by:

ur = cos θi + sin θj

and

uθ = − sin θi + cos θj.
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Here the radial unit vector ur always points directly away from the
origin, while the transverse unit vector uθ is rotated 90◦ from the radial
unit vector.

1.2 Polar Relations

If we differentiate our equations for the radial and transverse unit vectors
we get:

dur

dt
= − sin θ

dθ

dt
i + cos θ

dθ

dt
j = uθ

dθ

dt
.

and

duθ

dt
= − cos θ

dθ

dt
i − sin θ

dθ

dt
j = −ur

dθ

dt
.

Now, if we differentate our radial vector r = rur we get, according to
the product rule:

dr

dt
= r

dur

dt
+
dr

dt
ur = r

dθ

dt
uθ +

dr

dt
ur.

Now, if we differentiate this one more time we get:

d2r

dt2
= r

dθ

dt

duθ

dt
+ r

d2θ

dt2
uθ +

dr

dt

dθ

dt
uθ +

dr

dt

dur

dt
+
d2r

dt2
ur

= −r
(

dθ

dt

)2

ur + r
d2θ

dt2
uθ +

dr

dt

dθ

dt
uθ +

dr

dt

dθ

dt
uθ +

d2r

dt2
ur

=

[

d2r

dt2
− r

(

dθ

dt

)2
]

ur +

[

r
d2θ

dt2
+ 2

dr

dt

dθ

dt

]

uθ.

If we then note that

1

r

d

dt

(

r2
dθ

dt

)

= r
d2θ

dt2
+ 2

dr

dt

dθ

dt
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then we see that the above finally simplifies to:

r′′ =

[

d2

dt2
− r

(

dθ

dt

)2
]

ur +

[

1

r

d

dt

(

r2
dθ

dt

)]

uθ.

Now, if we use Newton’s law of universal gravitation we see that we
must have the equality:

r′′ = −
k

r2
ur =

[

d2

dt2
− r

(

dθ

dt

)2
]

ur +

[

1

r

d

dt

(

r2
dθ

dt

)]

uθ.

If we equate the direction vectors we get the two relations:

1

r

d

dt

(

r2
dθ

dt

)

= 0

and

d2r

dt2
− r

(

dθ

dt

)2

= −
k

r2
.

It is from these two equations that we can derive Kepler’s first and
second laws of planetary motion.

1.3 Kepler’s Second Law

The first of these equations implies that:

r2
dθ

dt
= h

where h is a constant. The polar-coordinate area element is dA = 1

2
r2dθ,

and so the above relation implies that dA/dt = 2h, and as 2h is a constant
we have that this is Kepler’s second law.
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1.4 Kepler’s First Law

To derive Kepler’s first law of, we want to equate the radial components
of the two expressions we derived for r′′ = a:

r′′ = −
k

r3
r = −

k

r2
ur =

[

d2r

dt2
− r

(

dθ

dt

)2
]

ur.

If we combine this with our earlier relation:

r2
dθ

dt
= h

which implies

r

(

dθ

dt

)

2

=
h2

r3

we get the equivalence:

d2r

dt2
−
h2

r3
= −

k

r2
.

Now, this is a differential equation, but it’s nonlinear. However, if we
make the substitution r = 1/z we get:

dr

dt
= −

1

z2

dz

dt
= −r2

dz

dθ

dθ

dt
= −h

dz

dθ
.

If we differentiate this again with respect to t we get:

d2r

dt2
= −h

d2z

dθ2

dθ

dt
.

If we then use our earlier equality:
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dθ

dt
=

h

r2

we get:

d2r

dt2
= −

h2

r2

d2z

dθ2
.

If we then plug this relation into our equality:

d2r

dt2
−
h2

r3
= −

k

r2

we get:

−
h2

r2

d2z

dθ2
−
h2

r3
= −

k

r2
.

If we then multiply through by −r2/h2 we get:

d2z

dθ2
+

1

r
=

k

h2
.

If we then finally use our defining relation for z, namely z = 1/r, we
get:

d2z

dθ2
+ z =

k

h2
,

which is a linear differential equation we know how to solve!

The corresponding homogeneous equation is:

d2z

dθ2
+ z = 0
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which has solution:

zh(θ) = A sin θ +B cos θ.

Using the method of undetermined coefficients we get that our partic-
ular solution is:

zp(θ) =
k

h2
.

Therefore, our general solution is:

z(θ) = zh(θ) + zp(θ) = A sin θ +B cos θ +
k

h2
.

Now, if we define the constants α, e, and L to be:

α = arctan

(

A

B

)

e =
h2
√
A2 +B2

k

L =
h2

k

then we note that:

A =
√
A2 +B2 sinα

B =
√
A2 +B2 cosα

and so our formula becomes:

(
√
A2 +B2)(sinα sin θ + cosα cos θ) +

1

L
.
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Now, if we use the trigonometric relation:

cos (φ− ψ) = sinφ sinψ + cos φ cosψ

then we get for our formula above:

(
√
A2 +B2) cos (θ − α) +

1

L
.

Finally, if we note that:

√
A2 +B2 =

√
A2 +B2

(

h2

k2

)(

k2

h2

)

=

(

h2
√
A2 +B2

k2

)

(

1

L

)

=
e

L
,

then our above formula becomes:

e cos (θ − α)

L
+

1

L
=

1 + e cos (θ − α)

L
.

So, we have:

z(θ) =
1 + e cos (θ − α)

L

and therefore given r = 1/z:

r(θ) =
L

1 + e cos (θ − α)
.

This is the polar formula for an ellipse. Therefore, the motion of the
planet around the sun is an ellipse, and this is Kepler’s first law.
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1.5 Plotting

As an example of some elliptical orbits, attached are some ellipses plotted
in Maple. They were plotted using a parametric plotter, using the para-
metric relations:

x(t) = r(t) cos t, y(t) = r(t) sin t, 0 ≤ t ≤ 2π.
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