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This is my sample writeup for our second class project. Your writeup
obviously doesn’t need to be exactly like this, but it should contain more
or less the same information.

1 Derivation of Kepler’s First and Second Laws
from Newton’s Law of Universal Gravitation

Kepler’s three laws of planetary motion state:

1. The orbit of each planet is an ellipse with the sun at one focus.

2. The radius vector from the sun to each planet sweeps out area at a
constant rate.

3. The square of the planet’s period of revolution is proportional to the
cube of the major semiaxis of its elliptical orbit.

In Newton's great book Principia Mathematica (1687) he derived his law
of universal gravitation based upon Kepler’s laws. In this project we’re go-
ing to go the other way, essentially proving that Newton’s law of universal
gravitation is equivalent to Kepler’s laws, in terms of planetary motion at
least.



1.1 Preliminaries

For this derivation we will assume that the sun is located at the origin in
the plane of motion of a planet. We're assuming that we’re dealing with a
radial force, and so it's OK to assume that the planet’s motion takes place
in a plane. In this case we can write the position vector of the planet in
cartesian form as:

r(t) = x(t)i + y(t)j.

where i and j are the unit vectors in the x and y coordinates, respec-
tively.

Newton's law of universal gravitation states that:
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Where F is the force upon the orbiting planet, G is Newton’s universal
gravitational constant, m, is the mass of the sun, m, is the mass of the
planet, r = /22 4 y? is the distance from the sun to the planet, and uis a
unit vector that points from the sun at the origin towards the planet. We
note that G and m, are both constants, and so we can write their product
as k. We also define r = ru. We finally note that Newton’s second law of
motion states that F = m,r”. If we make these substitutions and simplify
we get the relation:

If we switch to polar coordinates, then the radial and transverse unit
vectors are given by:
u, = cos 0i + sin 0j
and

uy = —sin i + cos 0.
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Here the radial unit vector u, always points directly away from the
origin, while the transverse unit vector uy is rotated 90° from the radial
unit vector.

1.2 Polar Relations

If we differentiate our equations for the radial and transverse unit vectors
we get:

du, do do do
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duy do do do
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Now, if we differentate our radial vector r = ru, we get, according to
the product rule:
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Now, if we differentiate this one more time we get:
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If we then note that
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then we see that the above finally simplifies to:
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Now, if we use Newton’s law of universal gravitation we see that we
must have the equality:
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If we equate the direction vectors we get the two relations:
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It is from these two equations that we can derive Kepler’s first and
second laws of planetary motion.

1.3 Kepler’s Second Law

The first of these equations implies that:

df
2
Z_h
Tt
where h is a constant. The polar-coordinate area elementis dA = r2d,
and so the above relation implies that dA/dt = 2h, and as 2h is a constant
we have that this is Kepler’s second law.



1.4 Kepler’s First Law

To derive Kepler’s first law of, we want to equate the radial components
of the two expressions we derived for r’ = a:

e 7 B 7 "

If we combine this with our earlier relation:

b _

dt
which implies
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we get the equivalence:
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Now, this is a differential equation, but it’s nonlinear. However, if we
make the substitution r = 1/2z we get:

dr ldz  ,dzd) . dz

at " Zdr . dodt do
If we differentiate this again with respect to ¢t we get:
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If we then use our earlier equality:



at  r?
we get:
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If we then plug this relation into our equality:

d*r  h? B k
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we get:
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If we then multiply through by —r?/h? we get:
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If we then finally use our defining relation for z, namely z = 1/r, we

get:
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which is a linear differential equation we know how to solve!

The corresponding homogeneous equation is:

d?z



which has solution:
2p(0) = Asinf + B cos 6.

Using the method of undetermined coefficients we get that our partic-
ular solution is:

Therefore, our general solution is:
. k
2(0) = zn,(0) + 2,(0) = Asin@ + Bcosf + 2R

Now, if we define the constants «, ¢, and L to be:

= arctan é
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then we note that:

A=+vVA%2+ B?sina
B =+VA2+ B2cosa

and so our formula becomes:

1
(VA2 + B?)(sinasin§ + cos acos ) + T



Now, if we use the trigonometric relation:

cos (¢ — 1) = sin ¢ sin ) + cos ¢ cos

then we get for our formula above:

(VA% + B?)cos (0 — a) + %

Finally, if we note that:

ST - VT (Z_z) (;) _ (LF) (1) e

then our above formula becomes:

ecos(@ —a) 1 1+ecos(fd—a)

L L L

So, we have:

2(0) = 1+ecoz(9—oz)

and therefore given r = 1/2:

B L
~ 1+ecos(f—a)

r(6)

This is the polar formula for an ellipse. Therefore, the motion of the

planet around the sun is an ellipse, and this is Kepler’s first law.
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1.5 Plotting

As an example of some elliptical orbits, attached are some ellipses plotted
in Maple. They were plotted using a parametric plotter, using the para-
metric relations:

x(t) = r(t) cost, y(t) = r(t)sint, 0 < ¢t < 2.



'The parametric formulas for an ellipse are:
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For a simple graph of a unit circle we enter:
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Taking a look at some other ellipses:
e =5

(1)

(2)
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(5)
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plot([x{1), (1), 1=0.2-Pi1].-3.3,-3..3);
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Rotating this ellipse:
g = Ei.
=
i
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(7)
plot([x(1). y(1),1=0.2-1).-3.3,-3..3);
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Increasing s size:
[ =2
~ (8)

lor [x(n). y(1).1=0.2 ] -4 4.-4.4):
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Iet’s take 2 look at the shape of the orbits for some of the planets in the solar system. Here's we'll
normalize things so L=l and a = 0.

L= I
1 (9)
a =
o (10)
For the Earth we have:
e = .01067:
00167 (i)

plor{ [x(1). ¥(1).1=0.2-1}-2.2,-2.2 )
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Which is very close to a circular orbit! No wonder Copernicus thought the orbits were circular. As for
the other planets, for Venus we have an even less eccentric orbit:
¢ = 00068:

0.0068 (12)
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plot([x(1). y(),1=0.2-1].-2.2.-
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While for Mars we have a slightly more eccentric orbit, but stilll pretty close 1o circular:

e = 0933,

y

(.0933

(13)
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While for Mercury we have a substantially more eccentric orbit:
e = 2056

plor( [x(). ¥(r),1=0.2-1].-

(.2056
,-2.2.-2

2.2}
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And for Pluto the orbit is more eccentric still:
e = 2486;

0.2486

plot( [x(1). v(1). 1=0.21].-2.2,-2.2};
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All of these are reasonably circular, and so none of the planets have an exceptionally eliptical orbit.
Otherwise, they might smash into cach other! On the other hand, comets frequently have VERY
cecentric orbits. Haley's comet for example has a very high eccentricity, and so a very noncircular orbit:
e = .97
0.97 (16)

plot( [x(1), ¥(1), 1=0..2-1].-35 .35,-35 .35 )



Where here,

_30_

as is the case for all of these eliipses, the sun is at the origin.



