# Math 2280 - Explanation for Step 6 

Dylan Zwick

Spring 2009

Class, there has been some confusion about how we handle step 6 of the project, as it requires some chain rule jiu jitsu. So, here's an explanation of how it works.

If we define $r=1 / z$ then the chain rule tells us that:

$$
\frac{d r}{d t}=\frac{d r}{d z} \frac{d z}{d t}=-\frac{1}{z^{2}} \frac{d z}{d t}
$$

If we then use the relation from the textbook:

$$
r^{2} \frac{d \theta}{d t}=h
$$

we get:

$$
-\frac{1}{z^{2}} \frac{d z}{d t}=-r^{2} \frac{d z}{d t}=-h \frac{d t}{d \theta} \frac{d z}{d t}=-h \frac{d z}{d \theta} .
$$

And so we derive the relation:

$$
\frac{d r}{d t}=-h \frac{d z}{d \theta}
$$

If we differentiate again with respect to $t$ and again use the chain rule we get:

$$
\frac{d^{2} r}{d t^{2}}=-h \frac{d^{2} z}{d \theta^{2}} \frac{d \theta}{d t}
$$

Now, if we agin use our relation:

$$
r^{2} \frac{d \theta}{d t}=h
$$

then we get:

$$
\frac{d^{2} r}{d t^{2}}=-h \frac{d^{2} z}{d \theta^{2}} \frac{h}{r^{2}}=-\frac{h^{2}}{r^{2}} \frac{d^{2} z}{d \theta^{2}}
$$

If we then equate this with our relation from the textbook:

$$
\frac{d^{2} r}{d t^{2}}-\frac{h^{2}}{r^{3}}=-\frac{k}{r^{2}}
$$

we get:

$$
-\frac{h^{2}}{r^{2}} \frac{d^{2} z}{d \theta^{2}}-\frac{h^{2}}{r^{3}}=-\frac{k}{r^{2}}
$$

which simplifies to

$$
\frac{d^{2} z}{d \theta^{2}}+\frac{1}{r}=\frac{k}{h^{2}}
$$

If we then use our defining relation for $z$, namely $z=1 / r$, then we get the relation:

$$
\frac{d^{2} z}{d \theta^{2}}+z=\frac{k}{h^{2}} .
$$

Which is what we want to derive.

