
Math 2280 - Project 1 Writeup

Dylan Zwick

Spring 2009

This is my sample writeup for our first class project. Your writeup
obviously doesn’t need to be exactly like this, but it should contain more
or less the same information.

1 Euler’s Method

For the first part of our project I wrote an implementation of Euler’s method
in Maple (using code provided for you in the handout) and then used this
implementation to estimate the values of the “famous” numbers e, π, and
ln (2) by recognizing them as values of the solutions to certain differential
equations at given points. Each time the total x distance from the initial
x value to the estimated x value was 1, and I began by taking 50 steps,
and then doubling the step size for each iteration until the estimate settled
down. For the Euler’s method esimates settling down meant no change in
the first three decimal places.

The code used to implement Euler’s method (given in the handout) is:

EulersMethod := proc(x0,y0,h,n) local xk, yk, k;
xk := x0;
yk := y0;
k := 0;
while k < n do
k := k+1;
yk := yk + h * f(xk,yk);
xk := xk + h;

1



end do;
[xk,yk];
end;

I first used this code to esimate the value of e as being the solution to
the initial value problem:

dy

dx
= y

y(0) = 1

at the point x = 1.

I first set the function f to be f(x, y) = y by entering in the command:

f := (x,y) -> y;

then using these initial conditions I recorded the values:

Command h n Value
EulersMethod(0, 1, .02, 50) .02 50 2.692
EulersMethod(0, 1, .01, 100) .01 100 2.705
EulersMethod(0, 1, .005, 200) .005 200 2.712
EulersMethod(0, 1, .0025, 400) .0025 400 2.715
EulersMethod(0, 1, .00125, 800) .00125 800 2.717
EulersMethod(0, 1, .000625, 1, 600) .000625 1,600 2.717

So, my esimate using Euler’s method for the value of e out to three
decimal places is 2.717. The actual value out to three decimal places is
2.718.

The next famous value I estimated was ln (2), which is the solution to
the initial value problem:

dy

dx
=

1

x

y(1) = 0

2



at the point x = 2.

I first set the function f to be f(x, y) =
1

x
by entering in the command:

f := (x,y) -> 1/x;

then using these initial conditions I recorded the values:

Command h n Value
EulersMethod(0, 1, .02, 50) .02 50 0.698
EulersMethod(0, 1, .01, 100) .01 100 0.696
EulersMethod(0, 1, .005, 200) .005 200 0.694
EulersMethod(0, 1, .0025, 400) .0025 400 0.694

So, my estimate using Euler’s method for the value of ln (2) out to three
decimal places is 0.694. The actual value out to three decimal places is
0.693.

The next famous value I estimated was π, which is the solution to the
initial value problem:

dy

dx
=

4

1 + x2

y(0) = 0

at the point x = 1.

I first set the function f to be f(x, y) =
4

1 + x2
by entering in the com-

mand:

f := (x,y) -> 4/(1+xˆ2);

then using these initial conditions I recorded the values:

3



Command h n Value
EulersMethod(0, 1, .02, 50) .02 50 3.162
EulersMethod(0, 1, .01, 100) .01 100 3.152
EulersMethod(0, 1, .005, 200) .005 200 3.147
EulersMethod(0, 1, .0025, 400) .0025 400 3.144
EulersMethod(0, 1, .00125, 800) .00125 800 3.143
EulersMethod(0, 1, .000625, 1, 600) .000625 1,600 3.142
EulersMethod(0, 1, .0003125, 3, 200) .0003125 3,2000 3.142

So, my estimate using Euler’s method for the value of π out to three
decimal places is 3.142. The actual value out to three decimal places is
3.142.

2 Improved Euler’s Method

For the next part of the project I did the same thing, only instead of us-
ing Euler’s method I used an implementation of the improved Euler’s
method, and instead of calculating out the estimate to three decimal places,
I calculated the estimate out to five decimal places.

The code for implementing the improved Euler’s method I used was:

ImprovedEulersMethod := proc(x0,y0,h,n)
local xk, yk, k, k1, uk, k2;
xk := x0;
yk := y0;
k := 0;
while k < n do
k := k+1;
k1 := f(xk,yk);
uk := uk + h * k1;
k2 := f(xk+h,uk);
yk := yk + h * (1/2) * (k1+k2);
xk := xk + h;
end do;
[xk,yk];
end;

4



Using this improved implementation, and the same methodology as I
used with Euler’s method, I found the following esimates for the value of
e:

Command h n Value
ImprovedEulersMethod(0, 1, .02, 50) .02 50 2.71810
ImprovedEulersMethod(0, 1, .01, 100) .01 100 2.71824
ImprovedEulersMethod(0, 1, .005, 200) .005 200 2.71827
ImprovedEulersMethod(0, 1, .0025, 400) .0025 400 2.71828
ImprovedEulersMethod(0, 1, .00125, 800) .00125 800 2.71828

So, our estimate for e to five decimal places is 2.71828. The actual value
to five decimal places is 2.71828. Nice!

Estimating ln (2) using the improved Euler’s method I obtained the fol-
lowing:

Command h n Value
ImprovedEulersMethod(0, 1, .02, 50) .02 50 0.69317
ImprovedEulersMethod(0, 1, .01, 100) .01 100 0.69315
ImprovedEulersMethod(0, 1, .005, 200) .005 200 0.69315

Here the method converged rather quickly to the estimate of 0.69315
for the value of ln (2). The actual value to five decimal places is 0.69315.
Sweet!

Estimating π using the improved Euler’s method I obtained the follow-
ing:

Command h n Value
ImprovedEulersMethod(0, 1, .02, 50) .02 50 3.14152
ImprovedEulersMethod(0, 1, .01, 100) .01 100 3.14158
ImprovedEulersMethod(0, 1, .005, 200) .005 200 3.14159
ImprovedEulersMethod(0, 1, .0025, 400) .0025 400 3.14159

So, my estimate for π out to five decimal places is 3.14159. The actual
value to five decimal places is 3.14159. Excellent!

5



3 The Runge-Kutta Method

Finally, I wrote an implementation of the Runge-Kutta method, and used
this implementation to estimate the values of our three famous numbers
out to nine decimal places.

The code for my implementation of the Runge-Kutta method is:

RungeKuttaMethod := proc(x0,y0,h,n)
local xk, yk, k, k1, k2, k3, k4;
xk := x0;
yk := y0;
k := 0;
while k < n do
k := k+1;
k1 := f(xk,yk);
k2 := f(xk+(1/2) * h,yk+(1/2) * h* k1);
k3 := f(xk+(1/2) * h,yk+(1/2) * h* k2);
k4 := f(xk+h,yk+h * k3);
yk := yk + (h/6) * (k1+2 * k2+2 * k3+k4);
xk := xk + h;
end do;
[xk,yk];
end;

Using this implementation and our previous metholodology, I obtained
the following estimate for the value of e:

Command h n Value
RungeKuttaMethod(0, 1, .02, 50) .02 50 2.718281822
RungeKuttaMethod(0, 1, .01, 100) .01 100 2.718281831
RungeKuttaMethod(0, 1, .005, 200) .005 200 2.718281827
RungeKuttaMethod(0, 1, .0025, 400) .0025 400 2.718281810
RungeKuttaMethod(0, 1, .00125, 800) .00125 800 2.7182823
RungeKuttaMethod(0, 1, .000625, 1600) .000625 1,600 2.718281799

OK, what’s going on here? My values aren’t settling down, and they’re
even getting farther apart the more steps I take. Well, what’s happen-
ing here is that I’ve got a problem with rounding error, and that doesn’t

6



go away with more steps. It looks like, with the rounding limitations of
Maple, the best estimate for the value of e I can get with this approach is
out to 8 decimal places. This estimate is 2.71828182, which is correct. The
value of e to nine decimal places is 2.718281728.

For my esimate of the value of ln (2) to nine decimal places I obtained
the following:

Command h n Value
RungeKuttaMethod(0, 1, .02, 50) .02 50 0.693147181
RungeKuttaMethod(0, 1, .01, 100) .01 100 0.693147180
RungeKuttaMethod(0, 1, .005, 200) .005 200 0.693147181
RungeKuttaMethod(0, 1, .0025, 400) .0025 400 0.693147181

So, this time the values settled down, and my estimate for ln(2) out to
nine decimal places is 0.693147181, which is correct. Hooray!

Finally, for my estimate of the value of π out to nine decimal places
using the Runge-Kutta method I obtained the following:

Command h n Value
RungeKuttaMethod(0, 1, .02, 50) .02 50 3.141592656
RungeKuttaMethod(0, 1, .01, 100) .01 100 3.141592650
RungeKuttaMethod(0, 1, .005, 200) .005 200 3.141592658
RungeKuttaMethod(0, 1, .0025, 400) .0025 400 3.141592657
RungeKuttaMethod(0, 1, .00125, 800) .00125 800 3.141592654
RungeKuttaMethod(0, 1, .000625, 1600) .000625 1,600 3.141592646

Again, we’re running into round problems, and so it looks like the best
estimate we can come up with using this approach is out to eight decimals,
3.14159265, which is correct. The value of π to nine decimals is 3.141592654.

So, I implemented Euler’s method, the improved Euler’s method, and
the Runge-Kutta method in Maple and used these methods to calculate
estimates of famous numbers out to three, five, and nine decimal places
respectively. The nine decimal place estimates ran into problems with
rounding error, but other than that the methods worked well, especially
the improved Euler’s method and the Runge-Kutta method.

7


