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1 2nd-Order Linear Homogeneous Differential

Equations with Constant Coefficients

We’ll finish some of what we started last time. A second-order linear ho-
mogeneous differential equation is a differential equation of the form:

ay′′ + by′ + cy = 0

where a, b, c ∈ R are constants. Now, we know that if we can find two
linearly independent solutions to the above equations, then we’re done. In
other words, for any given initial conditions, we can find the solution as a
linear combination of our two linearly independent solutions. So, suppose
we “guess” that our solution is of the form y = erx. If we plug this solution
into our differential equation we get:

ar2erx + brerx + cerx = 0

Now, erx is never 0, and so we can divide both sides of this equation by
it to get:

ar2 + br + c = 0

So, if r is a root of the quadratic equation:
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ax2 + bx + c

then erx is a solution to the above differential equation.

Now, remembering back to junior high school, the roots of the quadratic
equation are:

r =
−b ±

√
b2 − 4ac

2a
.

There are three possibilities, depending upon whether b2 − 4ac, called
the descriminant, is positive, negative, or 0.

If b2 − 4ac > 0 then we get two distinct real roots, call them r1, r2. and
so we get two linearly independent solutions, er1x and er2x, and all of our
solutions are of the form:

y = c1e
r1x + c2e

r2x.

On the other hand, if b2 − 4ac = 0 then we only have one (repeated)
root, call it r, and our solutions are of the form:

y = c1e
rx + c2xerx

Now, how do we know xerx is a solution? Well, try it out:

y′(x) = rxerx + erx

y′′(x) = r2xerx + 2rerx

and plugging these into our differential equation we get:

a(r2xerx + 2rerx) + b(rxerx + erx) + cxerx

= xerx(ar2 + br + c) + erx(2ar + b)

Now, the first term is 0 by definition, and if b2 − 4ac = 0 then we have
r = −b/2a, and so the second term is 0 as well. So, it’s also a solution, and
we have a second linearly independent solution.

Now, sorry to put this off some more, but we’ll deal with the other case,
b2 − 4ac < 0, later.
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2 General Solutions of Linear Equations

Last lecture we saw what happens when we have 2nd-order linear ODEs
of the form:

A(x)y′′ + B(x)y′ + C(x)y = F (x)

Now, it only takes a little imagination to generalize to nth-order linear
ODEs:

P0(x)y(n) + · · · + Pn−1(x)y′ + Pn(x)y = F (x)

Now, if we assume P0(x) 6= 0 on our interval of interest I then we can
divide both sides by P0(x) to get:

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = f(x)

which has a corresponding homogeneous equation:

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = 0.

As with the second-order case, for a homogeneous nth-order ODE we
have any linear combination of solutions:

y = c1y1 + · · · ckyk

is also a solution.
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3 General Theory of nth-Order ODEs

Theorem - If p1, . . . , pn are continuous on I and f(x) is too then:

y(n) + p1y
(n−1) + · · · + pn−1y

′ + pny = f(x)

has a unique solution satisfying the initial conditions:

y(a) = b0, y
′(a) = b1, . . . , y

(n−1)(a) = bn−1

for bk ∈ R and a ∈ I .

Now, suppose we have a homogeneous nth-order ODE:

y(n) + p1y
(n−1) + · · · pn−1y

′ + pny = 0

and we have n solutions y1, . . . , yn. Can we get all solutions by solu-
tions of the form:

y = c1y1 + · · ·+ cnyn?

Well, as with 2nd-order linear homogeneous ODEs the answer is yes,
if the yk are linearly independent. Again, as with 2nd-order linear homo-
geneous ODEs we can check for linear independence by using the Wron-
skian.

Definition
A set of functions f1, . . . , fn are linearly independent on an interval I

provided:

c1f1 + · · · cnfn = 0

has no solutions on I except the trivial solution.

Now, how do we tell if they are linearly independent? As I said, we
look at the Wronskian.
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Now, again, the if everything is continuous on our interval of interest,
then the Wronskian is either never 0 or always 0. If it’s never 0 then the
functions are linearly independent, if it’s 0 then the functions are linearly
dependent.

The general proof uses the uniqueness theorem in the same way as
with 2nd-order linear homogeneous differential equations.

4 Nonhomogeneous Solutions

So far we’ve just been discussing homogeneous differential equations, but
what happens if we have have a non-homogeneous differential equation?
Well, suppose we have a non-homogeneous differential equation:

y(n) + p1y
(n−1) + · · · + pn−1y

′ + pny = f(x)

where f(x) 6= 0. Now, if we have a solution, which we’ll for right
now call yp1

, and another solution which we’ll call yp2
, then if we take

the difference of these two solutions yp1
− yp2

the difference will solve the
homogeneous equation:

y(n) + p1y
(n−1) + · · ·+ pn−1y

′ + pny = 0

and so will be of the form discussed above. In other words:

yp2
= yp1

+ c1y1 + c2y2 + · · · cnyn

where yp1
is a particular solution to the given nonhomogeneous equa-

tion, and the yi are n linearly independent solutions to the attendant ho-
mogeneous equation.
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OK, so what does this mean? It means that if we can fine just one
solution to the above nonhomogeneous equation, then we’ve found all
the other solutions if we can solve the attendant homogeneous equation.
Finding one solution can be hard, and finding the solutions of the atten-
dant homogeneous equation can also be hard, but in many situations we’ll
find out it’s possible and not that hard.

Example
Find the solution to the initial value problem:

y′′ − 4y = 12
y(0) = 0, y′(0) = 10

Noting that a solution to the given differential equation is yp = −3.

5 Homogeneous Equations with Constant Coef-

ficients

So far we’ve larned how to solve 2nd-order homogeneous equations with
constant coefficients, as long as the roots of the characteristic polynomial
are not complex.

Well, we’re now going to use this as a starting point for our study of
more general equations, and we’re going to figure out what to do if the
roots are complex.
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5.1 General Form of the Equation

The more general version of an nth order homogeneous linear differential
equation with constant coefficients is:

any(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0

The first thing to notice is that if we try what we did in the second order
case, namely plugging in the solution y = erx and seeing if it works, we
get:

anr
nerx + an−1r

n−1erx + · · ·a1re
rx + a0e

rx = 0

Now, if we divide both sides by erx, which we know we can do for any
value of x as erx is never 0, we get the equation:

anrn + an−1r
n−1 + · · ·+ a1r + a0 = 0

which is true if and only if r is a root of the characteristic polynomial for
our differential equation:

anxn + an−1x
n−1 + · · ·+ a1x + a0

So, to repeat, if r is a root of the characteristic polynomial for our dif-
ferential equation, then erx is a solution of our differential equation.

Now, the fundamental theorem of algebra says that for any polyno-
mial:

anx
n + an−1x

n−1 + · · ·a1x + a0

we can factor it as:

(x − c1)
r1(x − c2)

r2 · · · (x − cm)rm

where r1 + r2 + · · · + rm = n, and the constants ci could be complex
numbers. This presents us with a number of possible situations.
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5.2 Possible Situations

We can break down our possible situations into four distinct cases of vary-
ing complexity.

Case 1 - All roots of the characteristic polynomial are real and distinct.

If this is the case then we have n distinct solutions of the form {er1x, er2x, . . . , ernx},
and all our solutions can be written in the form:

y = c1e
r1x + c2e

r2x + · · ·+ cnernx

The Wronskian for these solutions, evaluated at 0, is:
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This is something called the “Vandemonde determinant”, and it’s
never 0 when the ri are distinct. This is proven in one of the sug-
gested homework problems.

Case 2 - Repeated Roots, all real.

Let’s first just look at the case when our polynomial factors as:

(x − c)n.

In this case our differential equation can be written as:

(D − c)ky = 0
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where D is the “differential operator”, an operator that when ap-
plied to a function takes the derivative of that function. It’s a linear
operator, and if you raise it to any power, that just means you take
that number of derivatives. For example:

(D − 1)2y = (D2 − 2D + 1)y = y′′ − 2y′ + y

Now, any solution y to our differential equation can be written in the
form y(x) = u(x)ecx. If we apply the operator (D− c) to this solution
we get:

(D − c)u(x)ecx = u′(x)ecx + cu(x)ecx − cu(x)ecx = u′(x)ecx.

If we repeat this process n times we get:

(D − c)u(x)ecx = u(n)(x)ecx.

If u(x)ecx is a solution to our differential equation then we have u(n)(x)ecx =
0, which implies that u(n) = 0, which means:

u(x) = c0 + c1x + c2x
2 + · · · + cn−1x

n−1

This give us a spanning set of independent functions {1, x, x2, . . . , xn−1},
and a corresponding set of solutions to our ODE {ecx, xecx, x2ecx, . . . , xn−1ecx}.

We’ll discuss the mixed case later.

Case 3 - Complex Roots.

Suppose that the characteristic polynomial for our polynomial is sec-
ond order and can be factored as:

(x − r)(x − r)
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where r is complex and r is its complex conjugate. Note that for any
polynomial:

anx
n + an−1x

n−1 + · · ·a1x + a0

if the ai are real and if r is a complex root, then r must be a complex
root as well. So, for any characteristic equation if we get a complex
root, we’ll get another root by taking its complex conjugate.

OK, so if r is a complex root, then we can write r as r = a + bi, and
we get a solution to our differential equation:

erx = e(a+ib)x = eaxeibx = eax(cos (bx) + i sin (bx))

where we’ve used Euler’s formula:

eiθ = cos θ + i sin theta.

Now, the fact that r = a − ib is also a solution to our characteristic
polynomial give us another solution:

er = eax(cos (bx) − i sin (bx)).

A linear combination of these two can be written as:

k1e
rx + k2e

rx = eax((k1 + k2) cos (bx) + (k1 − k2)i sin (bx)).

If we allow k1, k2 to be complex, then we can choose them so that the
above equation is equal to:

eax(c1 cos (bx) + c2 sin (bx))
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where the coefficients c1 and c2 are arbitrary real constants. So, we
get two linearly independent solutions to our ODE eax cos (bx) and
eax sin (bx), and any other solution can be written as a linear combi-
nation of these two.

We’ll incorporate the case of when you have repeated complex roots
or multiple complex roots in our general case.

Case 4 - The General Case

Suppose we have a linear homogeneous ordinary differential equa-
tion with constant coefficients:

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0 = 0

To solve this problem, in general, what we do is we first calculate the
roots of the characteristic polynomial:

anx
n + an−1x

n−1 + · · ·+ a1x + a0 = (x − r1)
k1(x − r2)

k2 · · · (x − rm)km

Now, there will be some set of these roots, say r1 through rl, which
are real. For each of these we will get a number of solutions equal to
the degree of the root. So, for example, for our first root r1 we will
get solutions:

c1e
r1x, c2xer1x, . . . , ck1

xk1−1er1x

Now, as for the other roots, rl+1 through rm, these will come in com-
plex conjugate pairs, and each element of these pairs will have the
same degree. So, for example, for the root rl+1 if we arrange out
terms appropriately rl+2 will be its complex conjugate, and we’ll
have kl+1 = kl+2. For this pair of roots we’ll get the set of solutions:
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c1e
al+1x cos (bl+1x), c2xeal+1x cos (bl+1x), . . . , ckl+1

xkl+1−1eal+1x cos (bl+1x)

and

d1e
al+1x sin (bl+1x), d2xeal+1x sin (bl+1x), ldots, dkl+1

xkl+1−1eal+1x sin (bl+1x).

where the ci and di are unknown constants, and the constants al+1

and bl+1 are the real part and complex part, respectively, of the root
rl+1 = al+1 + ibl+1.

Clear as mud? Yeah, in its full generality it’s kind of confusing to
state, but just know that this more general statement just builds up
from the particular cases we’ve seen so far, and in this class and
in most situations we’ll only be dealing with relatively small order
ODEs, so the full machinery of the more general statement won’t be
necessary in practice, but it’s good to know.
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