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1 The Runge-Kutta Method

Soy far we've learned two methods for approximating the solutions of an
inttial value pmbiem:

Well, we're going to learn a third, and this one is much more powertful
than Fuler’s method or the improved Euler’s method. This is called the
Runge-Kutta method.

Here's the idea behind the method. Suppose that we have computed
the approximations y,. y». ys- - - - yn to the actual values y(ry ). ylraj. . o yliy,)
and we want to approximate y, ¢y ~ yla,.)- Well, then the fundamental
theorem of calculus tells us:
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Now, Simpson’s rule for numerical integration tells us:
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We can rewrite this as:
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Now, we replace the slope value g, ) by:

then, we use Euler’s method to approximate one of the values of y' {z,
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then we use this slope value to approximate the other value of ' (i, -+
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and then we finally use this slope value to calculate our estimate for
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So, our final approximation is given by:
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1.1 Error Bounds on Runge-Kutta

QK, that’s a lot of work for each successive step. Is the extra work worth
it? Well, ves, definitely. In fact, our maximum error is bounded by h',
where h is the step size, in that:

'gf“{:) ﬁM < (Yh;

where (' is a constant that depends upon the second derivative of yl1),
but does not depend on h. So, cutting our step size by 2 cuts down our
maximum error by 16 times. In other words, it converges pretty quickly!

1.2 Example

Let’s run through the Runge-Kutta method for two steps along our toy
IVP:

dy
— T {
dr Y
y(0) =1
For our [irst step we get:
tz\'l — }

by = 1.65625

So, our approximation for y{.5)is:
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Now, if we repeat this for one more step we get:



ko = 2060543875
ky = 216357421875
by = 273022460938

So, our approximation for y(1} is:
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[ didn't write all the numbers out there, but you get the point. Any-
ways, our approximate value is very close to the actual value of ¢!, and
this is only using two steps. If we ran through this with ten steps {which
['m not going to do explicitly, thank you very much} we'd see that we have
an excellent approximation for ¢’

1.3 Final Remarks on These Methods

So, Runge-Kutta gives us a much better approximation, but each step or
Runge-Kutta requires more computation, so what is it that we want? What
we want is to be able to get an accurate estimate with a minimal amount
of computation. So, while it may look like Runge-Kutta requires more
computation, its advantage comes from us not having to use as small of
step size to get an accurate approximation. So, although it looks more
computationally intensive, what it turns out is that for most applications
the Runge-Kutta method’s value comes from it being able to provide us
with an accurate approximation that requires fewer computations that Eu-
ler’s method or the improved Euler’s method. As paradoxical as it might
sound, the Runge-Kutta method saves computation, and that's why it's
useful.

2 Second Order Linear Equations

2.1 Initial Example -

Suppose we take a mass m and attach it to a spring:
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If we displace the mass a short distance x from its equilibrium there
44444 ku, where k is the “spring

will be a restorative force £ acting on it ' =
constant”. This is called Hooke's law. So, we have:

= -k
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where the second relation is Newton's second law. So, we have the

relation:

Now, one solution to this 2nd order ODL 1s:

o [
r{f) = sin |y —1
' m

another solution is

i
Ik

w{t) = cos \‘ —1
m

and, in fact, any linear combination:

z{t) = ¢y sin (V/;E-!) 0o COS ( f‘;f)

works as a solution. This raises some questions:

1. Does this cover all solutions to this ODE?

2. Does this handle all possible initial conditions of displacement and
velocity?

3. Does this situation generalize?

The answer to all 3 of these questions 1s yes.



2.2 General Theory of 2nd Order Differential Equations

In generai, we call a differential equation of the form:
Al + Bloyy + Clo)y = Flx)

a linear second order ODE. Note that the functions A, B.C, and F
aren’t necessarily linear.

If #{r} = 0 on the interval, [, of which we're interested then we call
this a homogenous linear 2nd order ODE.

Qur initial example was indeed a homogenous 2nd-order ODE with:
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Now, we saw that we can find two different functions that both solved
the ODE, and in fact any linear combination of these functions also solved
the ODE. This is true in general.

Theorem - For any homogenenous 2nd order QDE with solutions 4. y»
on [ any function:

Y=y -+ Ol

is also a solution on I. This is pretty obvious and can be checked quite
easily.

As for our other questions, just as in first order ODEs we have an exis-
tence and uniquencss theorem:

Theorem - Suppose that functions p.g and [ are continuous on the
open interval [ containing the point «. Then, given any two numbers by. b
the equation:



has a unique solution on all of / that satisfies:
yla) = by, y'{a) = by

So, the answers our second question.

2.3 Linear Independence of Two Functions
Now, as for our first and third questions before we answer these we need
to lay some groundwork. First, a definition.

Definition - Two functions /. g defined on an open interval [ are lin-
early independent on / provided that neither is a constant multiple of the
other.

A pair of functions are linearly dependent if they're not linearly inde-
pendent. (Well... duh!)

For two functions f. g we define the Wronskian:

Wiy =1 g, E = [y - af

Now, here’s the important idea. If f. g are lincarly dependent then
Wi(f.g)=0onl
On the other hand, if f. ¢ are linearly independent then
W{f g} +# 0oncvery point of [.

Now, that every point fact is the important and amazing part.

Now, if y, and i, are linearly independent solutions of a 2nd order
linear ODE. Then all solutions of the ODE are of the form:

ylr) = cun ) + caplr)

This can be proven without too much problem by using our existence
and uniqueness theorem along with some lincar algebra.
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2.4 2nd Order Linear Homogeneous ODEs with Constant
Coefficients

A linear homogeneous 2nd order ODE is an ODE of the form:

({y” ,J, h‘u! i {”jj j— “

where a. b, ¢ are constant.

If we try the solution y{x) = ¢ then if we plug that in we get:
ar?e™ 4+ hre™ oo™ =0

Dividing through by ¢™* we see that this solution works if r is a root of

the quadratic equation:

So,

—h & VD - dac

2a

We'll only deal with distinct roots this time, but it the roots are distinct
real numbers, then all our solutions are of the form:

where the roots are ry and 7.

Example - What are the solutions of the differential equation:

y'(x) 4 2y () - 1hylz) =0
Well, the roots of #% + 22 — 15 are + = —5 and x = 3. 50, the solutions
of our differential equation are:

y(:p) — (—_.1(;,.3.;.' b e 51



