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1 Fuler’s Method

For the first order differential equations we’ve seen so far, most of them
have had the form:
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dr fia-y)

and most of them we’ve been able to solve using one technique or an-
other to get the solutions. Now, differential equations for which we've got
explicit solutions are actually the exception rather than the rule, and even
for relatively simple looking differential equations it may be impossible to
figure out the solution. For example:
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has no solution ¥y = f{x) where f(r) is an elementary function. By
elementary function we mean a function that can be expressed in terms
of the standard functions (exponentials, cosines, logarithms, polynomials,
etc...) from calculus.

However, even in situations where we cannot figure out the expliat
solution, we can frequently construct approximations to these solutions.
One of the oldest methods used to figure out approximate solutions is
called “Euler’s Method”, named after the (extremely) prolific and influ-
ential mathematician Leonhard Euler.



1.1 FEuler’s Method Algorithm

The idea behind Euler’s method is pretty simple. We're given an initial
value problem:
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and we want to construct an approximate solution. We construct the
approximate solution by starting with our initial condition, and taking the
slope at that point f(xq. Yol We assume that slope will be constant over
a small change in r, and so we move forward a small distance # in the
rdirection. The size of I is called the “step size” for our implementation.
If we move an amount / in the r-direction, and our slope is f(x0. o),
then we move an amount /1 x flan.yo) in the y-direction. This gives us
an approximation for the value of our solution for the input value ¢ + i,
namely yo + 7 x f(a0. o). We call these approximated points {a1.11. Then
from there, we just continue in the same fashion.
: What we get is a sequence of line segments that approximate our so-
Jution curve. 1f our step size is very small, this sequence of line segments
looks more and more like a curve, and (in theory) they get closer and closer
to our actual solution curve.

1.2 Example

Let's say we start with the simple differential equation:
dy
=y
dr
yt0) = 1.
This initial value problem has solution ¢(} = «". Let’s check out what

Euler’s method predicts for the solution at = 1 using a step size of h = ..
Applying the Euler’s method algorithm we get the following table:

‘ R .f‘{-""'ra-.%z} ¢l &
olo T 1 T
E 105 115 115 1.65

Lo 11 1225|226 272 |
L P S |




So, we can see that Euler’s method gives an O.K. solution here, but the
approximation isn’t great.

If we do this again, only instead use a larger step size of i = .1 we have
to do quite a few more calculations, but our estimate improves:
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3 3 11.3311.33 1.35
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So, as we can see, by taking a smaller step size we get closer to the
actual value, although again we're a little bit off. If we took an even small
step size, say /i = .01 then we’d get even closer.




Now, this example has been with a very simple situation, for which
we’ve already got the solution, but the idea is that it illustrates the method.
For more complicated problems with more many more steps these compu-
tations can get very, very tedious and time consuming. One of the major
reasons we have computers is 50 the computer can do this for us. You'll
be doing some of this stuff in your first Maple project.

1.3 Sources of Error

There are two major sources of error in the use of Euler’s method, called
local error and cumulative error.

Local error is the result of our assumption that the slope is constant
over our small step size h. Now, if our function f{z.y) is continuous and
our step size is small, this isn’t an unreasonable assumption, but it’s not
exact, and this will introduce some error.
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The other error results from cumulative error. Because in each of our
steps we introduce some local error, the starting points from which we
calculate the slopes for each step are also not quite right, and so the slopes
we calculate are not quite right, and so this introduces even more error.
The overall cumulative effect of this error is called, not terribly creatively,
cumulative error. It's meant to represent the total error (distance) of our
approximate solution from the actual solution.



Now, frequently we don’t know what the actual solution is, and so we
just want to know that our approximation is within some range of values
of the actual solution. The study of this type of situation along with related
situations is a topic for an entire class on error analysis. A necessary class if
vou want to be an engineer, but I must admit it sounds like a tremendously

boring one to me.

Also, even if you make very certain that you're getting close to the ac-
tual result (taking a very small step size) this can introduce problems. The
first is that even for a computer extremely small step sizes can lead to long
computation times, but the other problem can be more pernicious. The
computer rounds, and this rounding inevitably introduces some error. 50,
if you're dealing with very small step sizes, you're dealing with very small
numbers, and these numbers are frequently rounded, which introduces er-
rors that can accumulate over time. In fact, problems of this nature led to
the first results in what we now call “chaos theory”.

2 Improved Euler’s Method

Euler’s method is a pretty simple algorithm, and so as you might imag-
ine it's not terribly hard to improve upon it. Here's we’ll introduce an
improvement upon Euler’s method, and go over some results (but not
derivations) of the error bounds we get when using these methods.

71 Error Bounds on Fuler’s Method

First, a theorem that gives us an error bound upon Euler’s method, and
lets us now how much we can improve our estimates if we decrease the

value of our step size h.

Theorem

Suppose that the initial value pr(}biem
du B
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has a unique solution y(r) on the closed interval [o. b] with a = g, and

assume that y(r) has continuous second derivatives on la.b]. Then there
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exists a constant €' such that the following is true: 1f the approximations
TR T yy to the actual values y(x1). ylaz). .- yla,) at points of la, b are

computed using Euler’s method with step size it > U, then
iyn - ?)’(In)[ < 'h

foreachn=1.2..... k.

Now, this constant (' is tricky to determine (it depends on the maxi-

mum value of [¢/{x)] on the interval [a, b)), and so the take-away from this
theorern is that if you decrease your step size by 1/2, you've decreased

our maximum possible error by 1 /2. We note that this theorem assumes
you don’t have any problems with rounding error.

72 An Improvement to Fuler’s Method

Qur improvement on Euler’s method is based upon getting a better es-
timate for what the slope is throughout the interval s upon which we're
approximating it as being constant.

Here’s the idea. We take our starting point (1o yp) and we figure out
what the slope is here flxg.yo), and we use this information, just as in
Fuler’s method, to get a value for our next point:

wy = ao +
vy = Yo+ i f@e- o)

We then calculate what the slope will be at the point (uy. v ). We then
use the average of the slopes [ (xo- vo) and fluy.v1) to calculate our next
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We then repeat this algorithm to figure out the points (1. v, ).

2.3 FError Bounds on Improved Euler’s Method

The improved Fuler’s method involves more calculations, and so for it to
be any use at all it had better give us better etimates. Well, it turns out that
we have a nice theorem that says it does:

Theorem
Suppose that the injtial value problem
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)
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has a unique solution y(r) on the closed interval [a. b with o = .y, and
assume that y(r) has continuous second derivatives on [a.]. Then there
exists a constant (' such that the following is true: If the approximations
Y- Yo - 4, to the actual values y(7,). ylaa). ... y{ry ) at points of [a. 4] are
computed using the improved Euler’s method with step size i > {, then
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foreachn=1.2.....k

So, for example, if we halved our step size using Euler’s method we’d
only decrease our maximum error by one half, but if we have our step size
using the improved Euler’s method, we decrease our maximum error by

one fourth. Pretty sweet!




