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1 Equilibrium Solutions and Stability

1.1 Introduction

In the previous section we examined the simple population growth equa-
tion:
e = kr
dt
where k is a constant. We also examined the more sophisticated logistic
growth equation:

dx
— = ka{M —x
dt ( )
and saw that these equations were solved, respectively, by the solu-
tions:
r(t) = zoe™*

and
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Now, in some sense we were lucky with these two equations, in that we
were able to find explicit solutions without too much bother. Unfortuan-
tely, this isn’t always the case. However, even when it's difficult or impos-
sible to solve a differential equation precisely, we can frequently still get
important information about the behavior of the solutions by analyzing
the form of the differential equaiton.




1.2 Phase Diagrams

A differential equation is called autonomous is it has the form:

This means that the differential equation does not depend explicitly on
the independent variable ¢, although of course the variable r is a function
of £,

Both of our population growth equations are autonomous differential
equations. Now, for each of these we can draw something called a phase

diagram:
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Phase Diagram

Now, what we do to create these phase diagrams is that we solve for
the critical points of the function f{x). These critical points are the points
-whero the function f(x) = 0. Now, in between these critical points, if we
assume (as we will) that f(z) is continuous, the function wili be either
positive or negative.

Now, we draw out a portion of the x — axis containing all the criti-
cal points, and we mark the critical points with dots. Then, above the
segments in between these critical points we draw a left arrow if flr)is
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negative on the segment, and a right arrow if f(z} is positive on the seg-
ment. We also draw the appropriate arrows for the region greater than any
critical point and less than any critical point.

These critical points represent what are called equilibrium solutions to
our differential equation. These are solutions of the form = {(t) = ¢, where ¢
1s a constant.

1.3 Stability of Critical Points
The technical definition of stability of a critical point is this:

Definition - The critical point = = ¢ 15 stable if, for each ¢ > 0, there
exists a ¢ > 0 such that

|zy — i < ¢ implies that |z(t) —¢f < ¢

Now, what this is saying is that if you start our sufficiently close to
the critical point, within some “band” around the critical point, that you’ll

always stay within that band.
We can see this phenomenon in action if we look at some solution

curves for the logistic growth equation:
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We can see that for the critical point 1 = M we have a stable critical
point, and that solutions around the point “funnel” in towards it. The
critical point z = 0 on the other hand is an unstable critical point, and we
can see that solutions close to it diverge.



Now, it’s easy to tell from a phase diagram which critical points are
stable and which are not. If your critical point has two arrows going into
it, then it’s stable. If it has two arrows going away from it, then it’s unsta-
ble. There can also exist the (rare) situation where a critical point has one
arrow going into it and one arrow going out of it. Such a situation we call
semistable.

1.4 Harvesting a Logistic Population

The autonomouos differential equation:

dx

SE k(M - xy—

dt ( ’

may be considered to describe a logistic population with harvesting.

For instance, we might think of the population of fishina fake from which
h first per year are removed by fishing.

If we solve for the critical points of this differential equation, the quadratic
equation tells us these critical points are:
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Now, if h < --.i}»— then we will have two solutions, call them H and N,

where H < N. __In‘this case we'll have a phase diagram that looks like:
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and our solution (which you can check on your own) will be:
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Now, if we graph some representative solution curves of this differen-
tial equation we'll get a picture that looks like:
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and we can see that around N we have a stabl
around H we have an unstable critical pont. What this means is that for
alue greater than H our population size will approach N as
alue less than [/ our population size will
nt of time. Of course, in our physical
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e critical point, and

any initial v
time goes on. For any initial v
approach —o¢ In a {finite!} amou
model, we'd say you can’t have less than 0 fish, and so the mode

definitely break down when your population became negative.
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Now, if i = ~— then we'd have a situation with just one critical point

M/2,and a phase‘ diagram tht looks like this:
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Here our solution curves would look like this:
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and we’d have what's called a semistable equilibrium.
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that look like: 7]
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1.5 Bifurcation

We can actually see that there’s a relation between our critical points and
the value of our initial paramater 4. The relation can be written as:

h o= ( Me — {32).

If we graph this relation we'll get a parabolic curve of the form below:
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This is called a bifurcation diggram. It tells us for a given value of /1
how many critical points we have, and what these critical points will be.
We may have much more to say about these bifurcation diagrams in later
chapters.

2 Acceleration-Velocity Models

If an object is close to the earth’s surface and we neglect any effects of air
resistance, then the object will experience a constant downward force from
gravity, and Newton’s second law tells us that:

dv .
m— = f‘{j;
df
where m is the object’s mass, v 18 the object’s velocity, and [ is the
constant force from gravity, which will be —my.

Now, this is a very simple, and can be an OK model for some very
simple physical situations, but in almost every situation in real life, even
pretty simple ones, we'll need to take air resistance into account. Now, the
phenomenon of air resistance is a pretty complicated one, so we'll just take
a look at a relatively simple model that incorporates an approximation to
air resistance that works pretty well in many situations.
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71 Resistance Proportional to Velocity

The first we'll consider is the situation where air resistance is proportional
to velocity, and in the direction opposite the direction of the velocity:

1"}{ = -k

where k is a positive constant, and v is the object’s velocity. Now, com-
bining this air resistance with the (still assumed to be constant) force from
gravity and using Newton's second law we get:

du
m—- = —kv - mg
dt
§ dv
= — = U
dt f 9

where p = £.

Now, if we solve this differential separable differential equation we get:

f‘(ll) = <1"U + G) € -pl g
I8 I
(

Now, we note that as ¢ — > our velocity approaches the value - &
i
This is called the object’s terminal velocity. The absolute value of this is

called the object’s ferminal speed and is given by:

my

el ="

This phenomenon of terminal speed is what makes skydiving possible.
Now, the textbook also covers an example where the force of air resistance
is proportional to the square of the velocity. No new concepts in the anal-
ysis, but I'd recommend reading through it, although we won’t go over it
in lecture.



72 Variable Gravitational Acceleration

Now, the model of constant gravitation only works when we're close to the
surface of the earth, and the distances we're dealing with are small relative
to the radius of the earth. If we start to deal with larger distances, then we
must take into account that the acceleration from gravity is weaker the
farther we are away from the earth. Newton's law of universal gravitation
tolls us that the force from gravity experienced a distance r from the center
of the earth will be:

e JGm.ﬂ[
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where m is the mass of the object, A is the mass of the earth, 7 15
Newton's gravitational constant G = 6.67 x 107 Nm/kg.

We can use this relation to calculate an object’s escape velocity on the
surface of the earth. This is the speed at which an object must be moving
away from the earth at the earth’s surface if it is to break free from the
gravitational attraction of the earth and continue to move away “forever”.

Well, we note that if we move away from the earth along a line that
goes through the earth’s center, then Newton's second law tells us:

dz'f' G-U
(li? =

dr ) ) )
If we note that v = o then we can fransform this relation into:
d
dw (A
U=
dr e
If we integrate both sides with respect to r we get:

L, M
5 v o= —7 -+

-

If we say v(0) = v and solve this for ' we get
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Now, if the object is to escape from the “clutch” of the earth then its
velocity must always be positive as - oc. This is possible if

is:

For the earth the escape velocity is v 2= 11, 180m/s.



