
MATH 2280 - LECTURE 22

DYLAN ZWICK

1. Regular Singular Points

Last time we looked at how to solve linear ODEs of the form:

A(x)y′′ + B(x)y′ + C(x)y = 0.

The first thing we do is rewrite the ODE as:

y′′ + P (x)y′ + Q(x)y = 0,

where, of course,

P (x) =
B(x)

A(x)
, and Q(x) =

C(x)

A(x)
.

Now, if P (x) and Q(x) are analytic around the point a then we have
two linearly independent solutions of the form:

y(x) =
∞
∑

n=0

cn(x − a)n

where the raddi of convergence are at least as great as the distance
in the complex plane from a to the nearest singular point of either P (x)
or Q(x).

1.1. Ordinary, Regular, and Irregular Points. We first state with-
out proof the fact that either P (x) and Q(x) are analytic at x = a of
approach ±∞ as x → a.

Now, of course, we must ask the question of what we do if either P (x)
or Q(x) is not analytic at a? Well, it turns out we have methods for
dealing with this if they’re not analytic in the “right way”. We’ll also
restrict ourselves to dealing with the case a = 0, but we note that by
just shifting our coordinates this restriction incurs no loss of generality.

Date: Spring 2009.

1



2 DYLAN ZWICK

We divide singular points into two types: regular singular points,
and irregular singular points. A regular singular point is a singular
point where, if we rewrite:

y′′ + P (x)y′ + Q(x)y = 0

as

y′′ +
p(x)

x
y′ +

q(x)

x2
y = 0

the functions p(x) and q(x) are analytic. We will go over how to solve
second order linear ODEs around regular singular points using series
methods. We will not discuss how to solve ODEs around irregular
singular points, as that is a much more difficult and advanced topic.

Example - Determine whether x = 0 is an ordinary point, a regular
singular point, or an irregular singular point of the ODE:

x2y′′ + (6 sinx)y′ + 6y = 0

Solution - If we divide through by x2 we get:

y′′ +
6 sin x

x2
y′ +

6

x2
y = 0

which has limx→0 = ∞ for both coefficient functions, so it’s not an
ordinary point. However, if we rewrite this in the format above, we
see:

p(x) =
6 sinx

x
, q(x) = 6,

both of which are analytic at x = 0. So, x = 0 is a regular singular
point of the ODE.

We again state a fact without proof, this time that if the limits:

lim
x→0

p(x) and lim
x→0

q(x)

exist, are finite, and are not 0 then x = 0 is a regular singular point.
If both limits are 0 then x = 0 may be a regular singular point or an
ordinary point. If either limit fails to exists or is ±∞ then x = 0 is an
irregular singular point. So, this gives us a useful way of testing if a
singular point is regular.
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1.2. The Method of Frobenius. Now we’ll figure out how to ac-
tually solve these ODEs around regular singular points. We start by
examining the simplest such ODE:

x2y′′ + p0xy′ + q0y = 0

where p0, q0 are both constants. This ODE is solved by y = xr, where
r satisfies the quadratic:

r(r − 1) + p0r + q0 = 0.

Using this as our starting point, in general we assume our solution
has the form:

y(x) = xr

∞
∑

n=0

cnx
n.

Note - This is NOT a power series if r /∈ Z
+.

This is called a Frobenius series. Now, we want to take a look at
what this constant r needs to be and at what kind of series we get. So,
assume that we have a solution in this form. In this case we have:

y(x) = xr

∞
∑

n=0

cnx
n =

∞
∑

n=0

cnxn+r,

y′(x) =

∞
∑

n=0

cn(n + r)xn+r−1,

y′′(x) =

∞
∑

n=0

cn(n + r)(n + r − 1)xn+r−2.

If we substitute this into:

x2y′′ + xp(x)y′ + q(x)y = 0,

where p(x) and q(x) are analytic around x = 0 and so have a power
series representation of the form:

p(x) = p0 + p1x + p2x
2 + · · ·

q(x) = q0 + q1x + q2x
2 + · · ·

then plugging everything in we get:
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[r(r − 1)c0x
r + (r + 1)rc1x

r+1 + · · · ] + [p0x + p1x
2 + · · · ] · [rc0x

r−1 +
(r + 1)c1x

r + · · · ] + [q0 + q1x + · · · ] · [c0x
r + c1x

r+1 + · · · ] = 0.

Now, if we look at the xr term we get, assuming (as we of course
always can and should) that c0 6= 0, we get the relation:

r(r − 1) + p0r + q0 = 0.

This is called the indicial equation of the ODE, and it must, ac-
cording to the identity principle, be satisfies for our solution to work.
This is, of course, only a necessary condition, and we certainly haven’t
proven it’s sufficient. That’s where the next theorem comes in:

Theorem - Suppose that x = 0 is a regular singular point of the
ODE:

x2y′′ + xp(x)y′ + q(x)y = 0.

Let ρ > 0 denote the minimum of the radii of convergence of the
power series:

p(x) =
∞
∑

n=0

pnx
n and q(x) =

∞
∑

n=0

qnxn.

Let r1 and r2 be the real roots (we’ll always be assuming our roots
are real), of the indicial equation with r1 ≥ r2. Then

(1) For x > 0, there exists a solution of our ODE of the form:

y1(x) = xr1

∞
∑

n=0

anxn, a0 6= 0,

corresponding to the larger root r1.
(2) If r1 − r2 is neither zero nor a positive integer, then there exists

a second linearly independent solution for x > 0 of the form:

y2(x) = xr2

∞
∑

n=0

bnxn, b0 6= 0,

corresponding to the smaller root r2.

The radii of convergence of y1 and y2 are at least ρ. We determine
the coefficients by plugging our series into:

x2y′′ + xp(x)y′ + q(x)y = 0.
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Example - Use the method of Frobenius to solve the ODE:

2x2y′′ + 3xy′ − (x2 + 1)y = 0

around the regular singular point x = 0.

Proof - Rewriting this we get:

y′′ +
3
2

x
y′ +

−1
2
− 1

2
x2

x2
y = 0

and so p0 = 3
2

and q0 = −1
2
.

This gives us the indicial equation:

r(r − 1) +
3

2
r −

1

2
= (r −

1

2
)(r + 1) = 0,

and so our two roots are r1 = 1
2

and r2 = −1. So, our theorem
guarantees two linearly independent Frobenius type solutions.

Frequently it’s easier to work out our solutions without plugging in
specific values of r until the end. That’s what we’ll do here. Now, if
we have a solution of the form:

y(x) =

∞
∑

n=0

xn+r,

then if we plug this form into our ODE we get the relation:

2
∞
∑

n=0

(n + r)(n + r − 1)cnxn+r + 3
∞
∑

n=0

(n + r)xn+r −

∞
∑

n=0

cnx
n+r+2 −

∞
∑

n=0

cnx
n+r = 0.

If we shift the third series over by 2 we get:

2

∞
∑

n=0

(n + r)(n + r − 1)cnxn+r + 3

∞
∑

n=0

(n + r)xn+r −

∞
∑

n=2

cn−2x
n+r −

∞
∑

n=0

cnx
n+r = 0.

Now, if we look at the xr and xr+1 coefficients we get the relations:



6 DYLAN ZWICK

[2r(r − 1) + 3r − 1]c0 = 2(r2 +
1

2
r −

1

2
)c0 = 0

[2(r + 1)r + 3(r + 1) − 1]c1 = 0.

If we plug in our values for r we see that the first of these is auto-
matically satisfies for any c0, as the multiplier of c0 is just a constant
multiplied by the indicial equation. On the other hand, if we plug in
our values for r we see that the second equation is only satisfies for
c1 = 0.

As for the other coefficients we get the relations:

2(n + r)(n + r − 1)cn + 3(n + r)cn − cn−2 − cn = 0,

which simplify to:

cn =
cn−2

2(n + r)2 + (n + r) − 1
for n ≥ 2.

So, all the odd coefficients must be 0 given c1 = 0. As for the even
coefficients, for r = 1

2
we get:

an =
an−2

2n2 + 3n
,

and for r = −1 we get:

bn =
bn−2

2n2 − 3n
.

And, well, that’s pretty much as good as we can do. If we write out
our first few terms we get:

y1(x) = a0x
1
2

(

1 +
x2

14
+

x4

616
+

x6

55, 440
+ · · ·

)

,

and

y2(x) = b0x
−1

(

1 +
x2

2
+

x4

40
+

x6

2160
+ · · ·

)

.

2. Method of Frobenius: The Exceptional Cases

Now, we have to take a look at what happens when r1 − r2 is an
integer. This could happen if r1 = r2, or if r1 = r2 + N . In the latter
case there might, or might not, be two Frobenius solutions. In the
former case there’s obviously only one Frobenius solution.
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First, let’s work an example where they differ by an integer but we
get two distinct Frobenius solutions.

Example - Solve the ODE:

x2y′′ + (6x + x2)y′ + xy = 0.

Solution - Here p0 = 6 and q0 = 0, and so our indicial equation is:

r(r − 1) + p0r + q0 = r(r − 1) + 6r = r(r + 5),

with roots r = 0 and r = −5.

Now, if we substitute in from our Frobenius series we get:

∞
∑

n=0

(n + r)(n + r − 1)cnxn+r + 6
∞
∑

n=0

(n + r)cnx
n+r +

∞
∑

n=0

(n +

r)cnx
n+r+1 +

∞
∑

n=0

cnxn+r+1 = 0.

Combining these series we get:

∞
∑

n=0

[(n + r)2 + 5(n + r)]cnx
n+r +

∞
∑

n=1

(n + r)cn−1x
n+r = 0.

For n = 0 as always we just get c0 multiplied by the indicial equation,
so for both of our possible values of r c0 is arbitrary.

For n ≥ 1 we get the relation:

[(n + r)2 + 5(n + r)]cn + (n + r)cn−1.

If we begin with the smaller root we get:

n(n − 5)cn + (n − 5)cn−1 = 0.

For n 6= 5 we have:

cn = −
cn−1

n
.

So, this gives us:

c1 = −c0, c2 = − c1
2

= c0
2
,

c3 = − c2
3

= − c0
6
, c4 = − c3

4
= c0

24
.
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For n = 5 we see that any choice of c5 works, and so we get:

c5 = c5, c6 = − c5
6
,

c7 = − c6
7

= c5
5×6

, c8 = − c7
8

= − c5
6×7×8

, etc...

If we combine these we get the two solutions:

y1(x) = x−5

(

1 − x +
x2

2
−

x3

6
+

x4

24

)

and

y2(x) = 1 +
∞
∑

n=1

(−1)nxn

6 × 7 × · · · × (n + 5)
= 1 + 120

∞
∑

n=1

(−1)nxn

(n + 5)!
.

So, our solution is:

y(x) = c1y1(x) + c5y2(x).

Where we use the coefficient c5 suggestively.

So, everything works great, right? Unfortunately not. Here’s a situ-
ation where this method fails.

Example - Does the Frobenius method provide us two linearly inde-
pendent solutions to the linear ODE:

x2y′′ − xy′ + (x2 − 8)y = 0?

Solution -
Here p0 = −1, q0 = −8, and so the indicial equation is:

φ(r) = r(r − 1) − r − 8 = r2 − 2r − 8 = (r − 4)(r + 2) = 0

So, the roots of the inidial equation are −2 and 4, two real numbers
that differ by an integer.

If we substitute our Frobenius series into our ODE we get:

∞
∑

n=0

(n + r)(n + r − 1)cnx
n+r −

∞
∑

n=0

(n + r)cnx
n+r +

∞
∑

n=0

cnx
n+r+2 −

9

∞
∑

n=0

cnxn+r = 0.

Grouping these together we get:
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∞
∑

n=0

[(n + r)2 − 2(n + r) − 8]cnx
n+r +

∞
∑

n=0

cn−2x
n+r = 0.

The coefficient of n = 0 is the indicial equation, and so the indicial
equation can be anything. For n = 1 we get:

[(r + 1)2 − 2(r + 1) − 8]c1 = 0.

Now, the polynomial is not 0 for r = 4 or r = −2, and so c1 = 0.

For n ≥ 2 we get the relation:

[(n + r)2 − 2(n + r) − 8]cn + cn−2 = 0.

For r = −2 we get:

n(n − 6)cn + cn−2 = 0

and so

cn = −
cn−2

n(n − 6)
.

This works for n 6= 6, n ≥ 2. This gives us:

c0 = c0, c2 =
c0

8
, c4 = c0

64
.

At n = 6 we get:

0 · c6 + c4 = 0.

If c0 6= 0 then we’re in trouble. So, we do not get two Frobenius
solutions. We only get one, for r = 4, which is:

y1(x) = x4

(

1 + 6
∞
∑

n=1

(−1)nx2n

22nn!(n + 3)!

)

.

But, how do we find the other solution?

2.1. Reduction of Order. Suppose we have an ODE

y′′ + P (x)y′ + Q(x)y = 0

and we’ve derived one solution y1(x). We want to find another solu-
tion y2(x).

First we note that finding y2(x) is equivalent to finding:
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v(x) =
y2(x)

y1(x)
.

Here we’re assuming y1(x) 6= 0 on our interval of interest. Now, if
y2(x) = y1(x)v(x) then:

y′
2(x) = y1(x)v′(x) + y′

1(x)v(x)

and

y′′
2(x) = v(x)y′′

1(x) + 2y′
1(x)v′(x) + y1(x)v′′(x).

If we plug this into our ODE and group together we get:

[v(x)y′′
1(x) + 2v′(x)y′

1(x) + v′′(x)y1(x)] + P (x)[y1(x)v′(x) +
y′

1(x)v(x)] + Q(x)v(x)y1(x) = 0,

⇒ v(x)(y′′
1(x) + P (x)y′

1(x) + Q(x)y1(x)) + v′′(x)y1(x) + 2v′(x)y′
1(x) +

P (x)v′(x)y1(x) = 0.

Now, the first term is by definition 0. This gives us the relation:

v′′(x)y1(x) + (2y′
1(x) + P (x)y1(x))v′(x) = 0.

If we write u(x) = v′(x) then this becomes and equation that we
know how to solve. Namely,

u′(x) +

(

2
y′

1(x)

y1(x)
+ P (x)

)

u(x) = 0.

This is a first order ODE. So, if we introduct the integrating factor:

ρ = e
R

(2
y′1(x)

y1(x)
+P (x))dx

= e2 ln |y1(x)|+
R

P (x)dx = (y1(x))2e
R

P (x)dx.

Integrating our ODE we get:

u(x)(y1(x))2e
R

P (x)dx = C.

If we note that u(x) = v′(x) and integrate for v(x) we get:

v(x) = C

∫

e−
R

P (x)dx

(y1(x))2
dx + K.

If we use C = 1 and K = 0 then we get:

y2(x) = y1(x)
∫

e−
R

P (x)dx

(y1(x))2
dx.
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So, with one solution, we can find a second.

Example Find a second solution to the ODE:

x2y′′ − 9xy′ + 25y = 0

given that x5 is one solution.

Solution

y2(x) = x5

∫

1

(x5)2
e−

R

− 9
x

dxdx = x5

∫

1

x10
e9 ln |x|dx = x5

∫

x9

x10
dx =

x5 lnx.

Now, how do we apply this method to our special Frobenius cases.
Well, the textbook goes over a very long derivation that combines power
series and the reduction of order method to figure out the form of the
second solution. You can read it in the textbook if you’d like. The
punchline is the following theorem.

Theorem - If you have the ODE:

y′′ +
p(x)

x
y′ +

q(x)

x2
y = 0

where p(x) and q(x) are analytic around x = 0, and the root of the
indicial equation, r1, r2 differ by an integer then one solution is:

y1(x) = xr1

∞
∑

n=0

cnx
n.

As for the other solution, if r1 = r2, then:

y2(x) = y1(x) ln x + xr1+1

∞
∑

n=0

bnx
n.

On the other hand, if r1 6= r2, then:

y2(x) = Cy1(x) lnx + xr2

∞
∑

n=0

bnxn.

Here C may or may not (we’ve seen examples of both) be 0.

The radius of convergence of y1, and y2 is at least ρ, the minimum
of the radii of convergence for p(x) and q(x).
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Applying this theorem boils down to the same techniques we’ve seen
before. Plug it in, find the recursion relations for the coefficients, and
then see if you can get them into a closed form.


