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for s > c + a.

The proof of this I’ll leave as an exercise. It follows directly from the
definition of the Laplace transform.

Example Calculate the inverse Laplace transform of:

F (s) =
e−s − e−3s

s2

Solution

L−1

(

e−s − e−3s

s2

)

= L−1

(

e−s

s2

)

−L−1

(

e−3s

s2

)

= u(t− 1)(t − 1) − u(t − 3)(t − 3).

Example Calculate the Laplace transform of the function:

f(t) =

{

2 0 ≤ t < 3
0 t ≥ 3

Solution

We see that this is the function f(t) = 2−2u(t−3), which will have
the Laplace transform:

L(f(t)) =
2

s
−

2e−3s

s
.

Example Calculate the Laplace transform of the function:

f(t) =

{

sin t 0 ≤ t ≤ 3π
0 t > 3π

Solution

This is the function f(t) = sin t − u(t − 3π) sin t, which is the same
thing as f(t) = sin t+u(t−3π) sin (t − 3π), which will have the Laplace
transform:

L(f(t)) =
1

s2 + 1
+

e−3πs

s2 + 1
=

1 + e−3πs

s2 + 1
.

1.1. Transforms of Periodic Functions. We say a function defined
for t ≥ 0 is periodic if there is a number p > 0 such that

f(t + p) = f(t)
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for all t ≥ 0. The least positive value of p (if any) for which the
equation holds is called the period of the function f . If a function is
periodic, it’s actually relatively easy to calculate its Laplace transform,
and doesn’t require the computation of an indefinite integral.

Theorem - Let f(t) be periodic with period p and piecewise con-
tinuous for t ≥ 0. Then the transform F (s) = L(f(t)) exists for s > 0
and is given by

F (s) =
1

1 − e−ps

∫ p

0

e−stf(t)dt.

The proof of this theorem is kind of fun, so let’s go over it.

Proof - The definition of the Laplace transform gives

F (s) =

∫

∞

0

e−stf(t)dt =

∞
∑

n=0

∫ (n+1)p

np

e−stf(t)dt.

Now, we note that if we use our periodicity property and the substi-
tution τ = t + np we get:

∫ (n+1)p

np

e−stf(t)dt =

∫ p

0

e−s(τ+np)f(τ + np)dτ = e−nps

∫ p

0

e−sτf(τ)dτ .

So, using this relation, we see that our Laplace transform is:

F (s) =
∞

∑

n=0

(

e−nps

∫ p

0

e−sτf(τ)dτ

)

=
1

1 − e−ps

∫ p

0

e−sτf(τ)dτ .

Example Calculate the Laplace transform of the square-wave func-
tion f(t) = (−1)[t/a] of period p = 2a, where [x] denotes the greatest
integer not exceding x.
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which is what we wanted. Score!

2. Impulse and Delta Functions

Consider a force f(t) that acts only during a very short time interval
a ≤ t ≤ b, with f(t) = 0 outside this interval. A bat striking a ball or
a bolt of lightning striking a tower, for example. Typically, the effect
of this force depends only on the integral:

p =

∫ b

a

f(t)dt.

This number is called the impulse of the force f(t) over the interval
[a, b].

An example of this is that the change in momentum of a particle is
determined by the impulse of the force acting upon it.

This is nice because frequently we don’t know exactly what the force
f(t) is, but we can figure out what the integral above, the impulse, is,
and it turns out that that’s really all we need to know.

Now, if we have a given impulse p, we may as well model it with the
simplest function we can over the interval, namely, a constant function.
So, if we have an impulse p = 1, we can get this same impulse using
the function:

da,ǫ(t) =

{

1
ǫ

a ≤ t < a + ǫ

0 otherwise

where ǫ models the amount of time the impulse acts. We see, if
a > 0, that

∫

∞

0

da,ǫ(t)dt = 1.

Now, the time interval ǫ over which the impulse acts are frequently
very small, and it’s difficult to get a good measure of what this time is.
So, we can try to model an instantaneous impulse that occurs preciesely
at the time t = a. We call this instantaneous impulse the Dirac delta

funciton, and we represent it as:

δa(t) = lim
ǫ→0

da,ǫ(t).

Now, this delta function isn’t a “function” in the strictest sense.
It’s 0 everywhere except at the point a, and at a it’s ∞. Now, ∞

isn’t well defined, and a function that is 0 everywhere except at a point
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should integrate to 0 over any finite interval. Instead, this “function” is
actually a generalized function called a distribution, and is only defined
in terms of how it operates on integrals.

2.1. Delta Functions as Operators. The mean value theorem for
integral states that:

∫ a+ǫ

a

g(t)dt = ǫg(t)

where t is a point in [a, a + ǫ]. It follows that:

lim
ǫ→0

∫

∞

0

g(t)da,ǫ(t)dt = lim
ǫ→0

∫ a+ǫ

a

g(t) ·
1

ǫ
dt = lim

ǫ→0
g(t) = g(a).

by continuity of t at t = a. Now, we take this as the definition of
the Delta function. It’s an operator such that:

∫

∞

0

f(t)δa(t)dt = f(a).

Now, we note that if f(t) = e−st we get:
∫

∞

0

e−stδa(t)dt = e−as.

We define the Laplace transform of the delta function to be:

L(δa(t)) = e−as (a ≥ 0).

Now, if a = 0 we get:

L(δ(t)) = 1.

We note that as s → ∞ this Laplace transform does not go to 0, a
further implication that the Delta function is not a standard type of
function.

2.2. Delta Function Inputs. Finally, suppose that we are given a
mechanical system whose response x(t) to the external force f(t) is
determined by the differential equation:

Ax′′ + Bx′ + Cx = f(t).

Now, if we want to investigate the response of this system to a unit
impulse at the time t = a, it seems reasonable to express this response
as the solution to the differential equation:
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Ax′′ + Bx′ + Cx = δa(t).

But, again, δa(t) isn’t really a function, and so what would we mean
by a solution to the above equation? We call x(t) a solution to the
above differential equation provided that:

x(t) = lim
ǫ→0

xǫ(t),

where xǫ(t) is a solution of the differential equation:

Ax′′ + Bx′ + Cx = da,ǫ(t).

Now, it turns out that the way to get this solution x(t) is to just take
the Laplace transform of both sides, figure out X(s), and then figure
out its inverse Laplace transform. This is how we solve these type of
differential equations, and it’s the first real instance we’ve seen where
Laplace transform methods are necessary.

Example Solve the initial value problem:

x′′ + 4x = δ(t) + δ(t − π);

x(0) = x′(0) = 0.

Solution - If we take the Laplace transform of both sides we get:

s2X(s) + 4X(s) = 1 + e−πs

and solving this for X(s) we get:

X(s) =
1 + e−πs

s2 + 4

from which we can calculate the inverse Laplace transform using our
tables of Laplace transforms:

x(t) =
1

2
sin (2t) +

1

2
u(t − π) sin (2(t − π)) =

1

2
sin (2t)(1 + u(t − π)).

Example - Solve the initial value problem:

x′′ + 2x′ + x = t + δ(t);

x(0) = 0, x′(0) = 1.

Solution - Taking the Laplace transform of both sides we get:
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s2X(s) − 1 + 2sX(s) + X(s) =
1

s2
+ 1

which, if we solve for X(s), we get:

X(s) =
1

s2(s + 1)2
+

2

(s + 1)2

Now, if we solve this using a partial fraction decomposition we get:

X(s) = −
2

s
+

1

s2
+

2

s + 1
+

3

(s + 1)2

which has the inverse Laplace transform:

x(t) = −2 + t + 2e−t + 3te−t.

2.3. Systems Analysis and Duhamel’s Principle. Consider a phys-
ical system in which the output x(t) to the input function f(t) is de-
scribed by the differential equation:

ax′′ + bx′ + cx = f(t)

where the constant coefficients a, b and c are determined by the phys-
ical parameters of the system and are independent of f(t). We assume
for simplicity that the system is initially passive, and so x(0) = x′(0) =
0. Then the transform of our differential equation is:

as2X(s) + bsX(s) + cX(s) = F (s)

and so our Laplace transform X(s) is then given by:

X(s) =
F (s)

as2 + bs + c
= W (s)F (s).

Here the function

W (s) =
1

as2 + bs + c

is called the transfer function of the system. The inverse Laplace
transform of the transform function, w(t), is called the weight function

of the system. Using our earlier result about convolutions and the
above formula for X(s), we see that the solution to our system is:

x(t) =

∫ t

0

w(τ)f(t − τ)dt.
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This is called Duhamel’s principle for the system, and the important
thing about it is that the weight function w(t) is determined completely
by the parameters of the system, and has nothing to do with the imput
function f(t). So, if we know the weight function, we can calculate the
solution for any input by “just” calculting an integral. Now, integrals
aren’t easy, but they’re easier that solving differential equations. Now,
it’s interesting (actually, it’s very interesting, for reasons we won’t ex-
plore in this class) that our weight function is actually the response of
our system to a delta function input.

Example - Apply Duhamel’s principle to write an integral formula
for the solution of the initial value problem:

x′′ + 6x′ + 9x = f(t);

x(0) = x′(0) = 0.

Solution - The transfer function of this system is:

X(s) =
1

s2 + 6s + 9
=

1

(s + 3)2
.

The inverse Laplace transform of this transfer function, the weight
function, will be:

w(t) = te−3t.

So, the response x(t) will be given by the integral equation:

x(t) =

∫ t

0

τe−3τf(t − τ)dτ .


