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1 Laplace Transforms and Inverse Problems

We will now move into the study of Laplace transforms and their relation
with differential equations. A Laplace transformation is a map from func-
tions to functions, kind of like differentiation. For example, the differential
operator would map the function f(t) = t2 to:

Dt(f(t)) = 2t = f ′(t).

So, we have an operator, the differential operator, that takes a function
f(t) as its input, and outputs another function. Now, this operator is not
well defined for all functions. In fact, it’s only defined on a particular class
of functions called, not surprisingly, the differentiable functions.

The Laplace transform is a similar type of operation, in that it takes a
function as its input and outputs another function. There’s a certain set of
functions that are in the domain (allowable inputs) of the Laplace operator,
and so not every function has a well-defined Laplace transform.

For our earlier example, we’d find that the Laplace transform of t2 is:

L(t2) =
2

s3
.

To see why this is so, we need to see how the Laplace transform is
defined.
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1.1 Definitions and Properties

The Laplace transform is defined as:

Definition - Given a function f(t) defined for all t ≥ 0, the Laplace
transform of f is the function F defined as:

F (s) = L(f(t)) =

∫

∞

0

e−stf(t)dt

for all values of s for which the improper integral converges.

We recall that for an inproper integral what we mean by a limit of inte-
gration being infinity is that it’s defined in terms of the limit:

∫

∞

0

g(t)dt = lim
b→∞

∫

b

0

g(t)dt

and this only makes sense if the limit is well defined.

Let’s do some examples, beginning with the example stated above.

Example - The Laplace transform of t2 is:

L(t2) =

∫

∞

0

t2e−stdt = −
t2

s
e−st −

2t

s2
e−st −

2

s3
e−st|∞0

where we get the above result using integration by parts twice. Now, if
s ≤ 0 then the above integral diverges, while if s > 0 we have convergence
to our values:

L(t2) =
2

s3

and so our Laplace transform is only defined for s > 0. Something like
this will be true in almost every case that we deal with, and so we’ll almost
always have to specify the domain upon which our Laplace transform is
well defined.
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Now, just based upon the definition and the linearity of integration
we can deduce that the Laplace transform, like differentiation, is a linear
operator:

L(af(t) + bg(t)) = aL(f(t)) + bL(g(t))

where f(t) and g(t) are functions of t and a, b are constants.

1.2 Some Common Laplace Transforms

For starters, let’s calculate the Laplace transform of the function f(t) = 1:

L(1) =

∫

∞

0

e−stdt =
e−st

s
|∞0 =

1

s

where it is only well defined for s > 0.

Well, just using the two Laplace transforms we’ve calculated so far,
along with our linearity property, we can figure out some other Laplace
transforms without resorting back to our definition:

L(3t2 + 5) =
6

s3
+

5

s

s > 0

This is something we’re going to want to do frequently. Again, in anal-
ogy with differentiation, calculating a Laplace transform using the formal
definition can be a major pain, and we’re going to want to figure out the
Laplace transforms of some common functions, and some basic rules for
how we deal with sums and products of these functions, and then use
these rules as frequently as we can to calculate our Laplace transforms. It
saves a lot of time.

Let’s talk about how to take Laplace transforms of functions of the form
ta, where a is a real number and a > −1. Well, to do this we’re going to
first want to define a very interesting function called the gamma function,
which is defined for x > 0 by:
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Γ(x) =

∫

∞

0

e−ttx−1dt.

Now, it’s the matter of some simple integration to check that:

Γ(1) = 1

and using integration by parts we get the relation:

Γ(x + 1) = xΓ(x)

Now, this is interesting. If we say that x is an integer n we get that:

Γ(n + 1) = n!

I’d like to put an exclamation mark at the end of that sentence, but
there’s already one there. In fact, this is how we technically want to define
the factorial relation, and it gives an explanation as to why 0! = 1 that is
more than just an ad hoc definition. So, to recap, the Gamma function is
a function that is defined and continuous (we won’t prove continuity, but
trust me) for x > −1, and is equal to (n−1)! when x is any natural number.

Now, what does the Gamma function have to do with Laplace trans-
forms? I’m glad you asked. If we want to take the Laplace transform of a
function of the form ta with a > −1 we want to calculate the integral:

L(ta) =

∫

∞

0

e−sttadt

where, if we make the substitution u = st we get:

L(ta) =
1

sa+1

∫

∞

0

e−uuadu =
Γ(a + 1)

sa+1

In particular, if a is a natural number n then we get:
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L(tn) =
n!

sn+1
.

which is consistent with our results for t2 and 1.

Now, just using the definition of the Laplace transform and some cal-
culus we can calculate the following relations as well, some of which are
done for you in the textbook. The textbook also has a useful table of
Laplace transforms on page 446.

L(eat) =
1

s − a
, s ≥ a

L(cos kt) =
s

s2 + k2

L(sin kt) =
k

s2 + k2

L(cosh kt) =
s

s2 − k2

L(sinh kt) =
k

s2 − k2

As I said, all of these can be calculated directly from the definition with-
out too much trouble.

1.3 Important Properties of the Laplace Transform

Here, we’ll state without proof some important properties of the Laplace
transform. If you’re interested in the proofs they’re either in your textbook,
or in references provided by your textbook.

First, we say that a function f(t) is of exponential order as t → ∞ if there
exist nonnegative constants M, c, and T such that:

|f(t)| ≤ Mect for t ≥ T .

In other words, eventually it’s bounded by some exponential function
with a lienar argument.

So, for example, every polynomial is of exponential order, while the
function et

2

isn’t.
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Theorem - If the function f is piecewise continuous for t ≥ 0 and is of
exponential order as t → ∞, then its Laplace transform F (s) = L(f(t)) ex-
ists. More precisely, if f is piecewise continuous and satisfies the condition
defined above, then F (s) exists for all s > c.

Corollary - A result you may have guessed from our examples so far,
but a result that comes out from the proof of our theorem is that when the
function f(t) satisfies the requirements in our theorem then:

lim
s→∞

F (s) = 0.

Finally, we state a very important theorem, especially for what we’re
going to be doing with Laplace transforms.

Theorem - Suppose that the functions f(t) and g(t) are of exponential
order and piecewise continuous, to that their Laplace transforms both ex-
ist. If F (s) = G(s) for all s > c (for some c), then f(t) = g(t) wherever on
[0,∞) both f and g are continuous.

This property is extremely important, because what it says is that if
we’re given a Laplace transform F (s) we can make sense of what we mean
by the inverse transform. That is, the “unique” (except for isolated points)
function f(t) whose Laplace transform is F (s).

So, for example, if we were told that F (s) = 1
s+2

then according to our
earlier table we could figure out that f(t) = e−2t.

2 Transformation of Initial Value Problems

We’ll now discuss how we can use Laplace transforms and inverse Laplace
transforms to solve initial value problems. In other words, Laplace trans-
forms are going to allow us to take differential equations, and turn them
into algebraic equations that we can then solve using algebraic methods
to figure out our solution to our differential equation. It’s pretty slick.

Before we get into how we do this, we need to establish one very im-
portant property of the Laplace transform.
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Theorem - Suppose that the function f(t) is continuous and piecewise
smooth (which means smooth except at isolated points) for t ≥ 0 and is of
exponential order as t → ∞. Then L(f ′(t)) exists for some s > c, and

L(f ′(t)) = sL(f(t)) − f(0) = sF (s) − f(0)

and in fact by induction:

L(f (n)(t)) = snF (s) − sn−1f(0) − sn−2f ′(0) − · · · − sfn−2(0) − fn−1(0).

Now, this is huge! What it means is that not only can we take Laplace
transforms of functions, we can take Laplace transforms of linear differen-
tial equations(!) and use these Laplace transforms to find our solutions to
the differential equations.

Example - Use Laplace transforms to solve the initial value problem:

x′′ + 9x = 0; x(0) = 3; x′(0) = 4.

If we take the Laplace transform of the differential equation we get:

L(x′′ + 9x) = s2X(s) − sx(0) − x′(0) + 9X(s) = 0

where, if we use our initial conditions x(0) = 3 and x′(0) = 4 and solve
for X(s) we get:

X(s) =
3s + 4

s2 + 9
= 3

s

s2 + 9
+ 4

1

s2 + 9

which, if we look at our table of Laplace transforms, is the Laplace
transform of the function:

x(t) = 3 cos 3t + 4
3
sin 3t.
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Which is the solution to our initial value problem! Let’s see that again.

Example - Find the solution of the initial value problem using Laplace
transforms:

x′′ + 8x′ + 15x = 0; x(0) = 2; x′(0) = 3

If we take the Laplace transform of this relation we get:

s2X(s) − sx(0) − x′(0) + 8sX(s) − 8x(0) + 15X(s) = 0

where if we plug in our initial conditions and solve for X(s) we get:

X(s) =
2s + 19

s2 + 8s + 15
.

Now, if we do a partial fraction decomposition, noting that the denom-
inator factors as (s + 5)(s + 3) then we get:

X(s) =
−9

2

s + 5
+

13
2

s + 3
.

In this form the inverse Laplace transform becomes obvious:

x(t) = −3
2
e−5t + 7

2
e−3t.

Now, just as with differentiation, we have a relation between the Laplace
transform of a function and the Laplace transform of the integral of the
function.

Theorem - If f(t) is a piecewise continuous function for t ≥ 0 and
satisfies the condition of exponential order, then
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L

(
∫

t

0

f(τ)dτ

)

=
1

s
L(f(t)) =

F (s)

s

for s > c. Equivalently,

L−1

(

F (s)

s

)

=

∫

t

0

f(τ)dτ .

Now, these differentiation and integration rules can be exploited to
make the calculation of some Laplace transforms much easier.

Example - Find L(t sin kt).

This becomes much easier if we first differentiate:

f ′(t) = sin kt + kt cos kt

and we note that f(0) = f ′(0) = 0. If we then differentiate again we
get:

f ′′(t) = 2k cos kt − k2t sin kt.

If we note that the laplace transform of f ′′(t) is just s2F (s) we get the
relation:

s2F (s) =
2ks

s2 + k2
− k2F (s).

If we solve this for F (s) we get:

L(t sin kt) = F (s) =
2ks

(s2 + k2)2
.

We note that this is much easier than actually evaluating the integral:

L(t sin kt) =

∫

∞

0

te−st sin ktdt.
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