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If we think back to calculus II we’ll remember that one of the most im-
portant things we learned about in the second half of the class were Taylor
series. A Taylor series was a way of expressing a function as an “infinite
polynomial”. The Taylor series (or in this case the Maclaurin series, which
is just the Taylor series expanded around the point x = 0) for some com-
mon functions are:

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · ·

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

Now, we’re going to use this conception of an exponential function to
define what it means to take a “matrix exponential”, which is a matrix-
valued function of the form:

eA

where A is a constant square matrix. Now, it may be that you’ve never
seen this before, and it’s not immediately clear what this means. How do
you take something to a matrix power? Well, the way that we define this
exponential is in terms of an infinite series:
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eA = I + A +
A2

2!
+

A3

3!
+ · · ·

Now, we’ll say that the rigor police are off the beat here and won’t go
through a proof that this series always converges, but it’s true that this
series always converges to some constant matrix, where we view conver-
gence of a series of matrices in terms of convergence of their individual
entries.

Now, as we’re going to see, matrix exponentials have quite a bit to
do with finding solutions to first-order linear homogeneous systems with
constant coefficient matrices.

1 Fundamental Matrices for Systems of ODEs

To review, a solution to a system of ODEs satisfies the relation:

x′ = Ax.

If we have n linearly independent solutions x1, . . . , xn then any solution
to our system can be written in the form:

x = c1x1 + c2x2 + · · ·+ cnxn.

From these linearly independent solutions we can construct a matrix
Φ(t):

Φ(t) =
(

x1 x2 · · · xn

)

which is called a fundamental matrix for the system defined by the con-
stant matrix A. Now, our statement that we can write any solution x as a
linear combination of our linearly independent solutions can be written in
matrix form as:

x = Φ(t)c
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where c is a constant vector given by:

c =







c1

...
cn







This fundamental matrix Φ(t) is not unique, and if Ψ(t) is another fun-
damental matrix then we have:

Φ(t) =
(

x̃1 x̃2 · · · x̃n

)

.

where the x̃i are linearly independent solutions to our system of ODEs.
Now, each of these solutions can in turn be represented as a linear combi-
nation of our original xi:

x̃1 = c11x1 + c12x2 + · · · + c1nxn

x̃2 = c21x1 + c22x2 + · · · + c2nxn
...

x̃n = cn1x1 + cn2x2 + · · ·+ cnnxn

or, in matrix terminology:

Ψ(t) = Φ(t)C

where

C =











c11 c21 · · · cn1

c12 c22 · · · cn2

...
...

. . .
...

c1n c2n · · · cnn











.

If we have an initial condition:

x(0) = x0
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then we get for our solution:

x0 = Ψ(0)c

where c is a constant vector given by:

c = Ψ(0)−1x0

and we note that Ψ(0)−1 makes sense as Ψ(t) is nonsingular by defini-
tion.

Combining these results we get:

x(t) = Ψ(t)Ψ(0)−1x0.

Example Problem 5.5.2 from the textbook. The problem asks us to find
a fundamental matrix for the given system, and then find a solution satis-
fying the given initial condition.

x′ =

(

2 −1
−4 2

)

x

with initial condition

x(0) =

(

2
−1

)

To find a fundamental matrix, we need to find two linearly indepen-
dent solutions to the system. We can get these using the eigenvalue meth-
ods from section 5.2. The characteristic equation for our matrix is:

∣

∣

∣

∣

2 − λ −1
−4 2 − λ

∣

∣

∣

∣

= (2 − λ)2 − 4 = λ(λ − 4).

So, we have two eigenvalues λ = {0, 4}. For these two eigenvalues we
get the eigenvectors below.

For λ = 0 we have:
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(

2 −1
−4 2

) (

a

b

)

=

(

0
0

)

gives us an eigenvector:

v1 =

(

1
2

)

.

While for λ = 4 we have:

(

−2 −1
−4 −2

) (

a

b

)

=

(

0
0

)

which gives us the eigenvector:

v2 =

(

1
−2

)

.

From this we get the fundamental matrix:

Φ(t) =

(

1 e4t

2 −2e4t

)

.

The initial value of this fundamental matrix is:

Φ(0) =

(

1 1
2 −2

)

,

which has inverse:

Φ(0)−1 =
1

−4

(

−2 −1
−2 1

)

=

(

1

2

1

4
1

2
−1

4

)

.

Using this we get the initial constant vector:
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c =

(

1

2

1

4
1

2
−1

4

) (

2
−1

)

=

(

3

4
5

4

)

.

Using this we get the final solution:

x(t) = Φ(t)Φ(0)−1x0 =
(

1 e4t

2 −2e4t

) (

3

4
5

4

)

=

(

3

4
+ 5

4
e4t

3

2
− 5

2
e4t

)

.

Now, this may seem like a more difficult way of figuring out the same
solutions we’d figured out using other methods and, well, that’s because
it is. However, the major advantage to this method is that it makes it
very easy to switch around our initial conditions. Once we’ve found Φ(t)
and Φ(0)−1, it becomes very easy to find the solution for any given initial
conditions x0 just using the relation x(t) = Φ(t)Φ(0)−1x0.

2 Matrix Exponentials and ODEs

Right about now you might be asking why we discussed matrix exponen-
tials at the beginning of this lecture. We haven’t used them yet. Well, now
is when we’re going to talk about them, and we’ll see they are intimately
connected to fundamental matrices.

First, let’s go over some important properties of matrix exponentials.
If A is a diagonal matrix:

A =





a 0 0
0 b 0
0 0 c





then if we exponentiate this matrix we get:

eA =





ea 0 0
0 eb 0
0 0 ec



.
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Of course the same idea works, mutatis mutandis, for a diagonal ma-
trix of any size.

Also, if two matrices commute, so AB = BA, then:

eA+B = eAeB.

Note this this is not necessarily true if A and B do not commute.

Finally, if we have the matrix exponential:

eAt = I + At +
A2

2!
t2 +

A3

3!
t3 + · · ·

then we can differentiate these term by term (again, trust me, the rigor
police are off duty here...) and we get:

deAt

dt
= A + A2t +

A3

2!
t2 + · · · = AeAt.

Well, this is very interesting. What this is saying is that the matrix eAt

satisfies the matrix differential equation:

X′ = AX

where X is a square matrix the same size as A, and each column of x
satisfies x′

i = Axi. Now, as eAt is nonsingular, each of its columns must be
linearly independent, and so eAt is a fundamental matrix for A!

If we note finally that eA0 = I = I−1 then we get the relation:

x(t) = eAtx0.

where x(t) is a solution to the system of ODEs:

x′(t) = Ax(t)
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with initial condition:

x(0) = x0.

Example Solve the system of differential equations:

x′ =





2 3 4
0 2 6
0 0 2



 x

with initial conditions:

x(0) =





19
29
39



.

To solve this we note that:





2 3 4
0 2 6
0 0 2



 =





2 0 0
0 2 0
0 0 2



 +





0 3 4
0 0 6
0 0 0





where we call the first matrix in the sum on the right B and the second
matrix C.

Now, we note that:

C2 =





0 3 4
0 0 6
0 0 0









0 3 4
0 0 6
0 0 0



 =





0 0 18
0 0 0
0 0 0





and

C3 =





0 0 0
0 0 0
0 0 0



.
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This is an example of a matrix that is nilpotent. A matrix M is nilpotent
if Mk = 0 for some positive integer k. Calculating the matrix exponentials
of nilpotent matrices is very easy. It’s kind of like calculating Taylor series
for polynomials.

Now,

eCt =





1 0 0
0 1 0
0 0 1



 +





0 3 4
0 0 6
0 0 0



 t +
1

2





0 0 18
0 0 0
0 0 0



.

And so

eCt =





1 3t 4t + 9t2

0 1 6t
0 0 1



.

while for our matrix B the matrix exponential is just:

eBt =





e2t 0 0
0 e2t 0
0 0 e2t



.

So, given that BC = CB (which is very important for this example) we
get:

eAt = eBteCt =





e2t 3te2t (4t + 9t2)e2t

0 e2t 6te2t

0 0 e2t



.

Therefore, the solution to our differential equation is:

x(t) = eAtx0 =





e2t 3te2t (4t + 9t2)e2t

0 e2t 6te2t

0 0 e2t









19
29
39





=





19 + 243t + 351t2

29 + 234t
39



 e2t.
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3 Nonhomogeneous Linear Systems

So far we’ve almost exclusively focused on the system of ODEs:

x′ = Ax.

However, this is just the homogeneous case, which is pretty much the
easiest possible case! In general, we want to be able to solve a system of
ODEs of the form:

x′ = Ax + f(t)

for any value of f(t). How do we do this? Well, the same way we did
it last time. We guess! In particular, if our function f(t) is a combination
(sums and products) of polynomials, exponentials, cosines, and sines, then
we use the matrix analogue of the method of undetermined coefficients.
This method is easiest explained in the context of an example.

3.1 The Method of Undetermined Coefficients

Example - This is a modification of problem 5.6.3 from the textbook. We
want to find a particular solution to the ODEs:

x′ =

(

3 4
3 2

)

x +

(

0
t2

)

We note that our function f(t) is a second-order polynomial with con-
stant matrix coefficients, so we guess that our particular solution will also
be a second-order polynomial with constant matrix coefficients:

xp = a + bt + ct2

If we make this guess then we have the relations:

10



x′

p =

(

3 4
3 2

)

xp +

(

0
t2

)

.

Which in component form gives us:
(

b1 + 2c1t

b2 + 2c2t

)

=

(

(3a1 + 4a2) + (3b1 + 4b2)t + (3c1 + 4c2)t
2

(3a1 + 2a2) + (3b1 + 2b2)t + (3c1 + 2c2 + 1)t2

)

Now, if we equate all the coefficients of t on both sides for each row
and solve for the unknowns we get:

xp =
1

756

(

−868 + 840t − 504t2

861 − 882t + 378t2

)

Now, the only issue here is the same issue that comes up when our
function f(t) exhibits duplication with our homogeneous solution. So, for
example, if we have the system:

x′ =

(

4 2
3 −1

)

x −

(

15
4

)

te−2t

then out homogeneous solution is:

xh(t) = c1

(

1
−3

)

e−2t + c2

(

2
1

)

e5t

which exhibits duplication with our preliminary trial solution xp(t) =
ate−2t + be−2t. Now, this is where this method differs from the earlier
method of undetermined coefficients. Here, we need to multiply by t until
we no longer exhibit duplication, but we still have to include all lower
terms! So, our new trial solution would be:

xp(t) = at2e−2t + bte−2t + ce−2t.

We could solve this, but it turns out that the method of variation of
parameters is actually simpler to use here.

11



3.2 The Method of Variation of Parameters

In matrix form the method of variation of parameters is actually pretty
easy to formulate.

Suppose we have a system of ODEs:

x′ = P(t)x + f(t)

and we already have a complete set of solutions to the associated ho-
mogeneous system, and we therefore have a fundamental matrix Φ(t).
Then we’re going to try and write our particular solution as a linear com-
bination of our linearly independent solutions to the homogeneous equa-
tion, but instead of being a linear combination involving constant coeffi-
cients, the coefficients will be functions. In matrix notation this is:

xp(t) = Φ(t)u(t).

If we differentiate this we get:

x′

p(t) = Φ(t)′u(t) + Φ(t)u′(t).

Now, if we use the relations:

x′

p(t) = P(t)xp

and
Φ′(t) = P(t)Φ(t)

then plugging these relations into our above system and simplifying
we get:

Φ(t)u′(t) = f(t).

So, if we solve this for u(t) we get:
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u(t) =

∫

Φ(t)−1f(t)

and therefore

xp(t) = Φ(t)

∫

Φ(t)−1f(t).

Now, if P(t) = A, where A is a constant matrix, then we have the fun-
damental matrix Φ(t) = eAt, and particular solution given by:

xp(t) = eAt

∫

e−Atf(t)

and to solve a particular initial value problem we get:

x(t) = eAtx0 + eAt

∫ t

0

e−Asf(s)ds.
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