
Math 2280 - Lecture 13
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Spring 2009

1 Second Order Systems and Mechanical Appli-

cations

The major result of our last lecture is that if we have a first order linear
homogeneous system of differential equations with constant coefficients:

x′

1 = a11x1 + a12x2 + · · ·+ a1nxn

x′

2 = a21x1 + a22x2 + · · ·+ a2nxn

...
x′

n = an1x1 + an2x2 + · · ·+ annxn

we can write this as a matrix equation:

x′ = Ax

where

A =











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann











and x =











x1

x2
...

xn











.
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between the positions and accelerations of the three masses:

m1x
′′

1 = −k1x1 + k2(x2 − x1)
m2x

′′

2 = −k2(x2 − x1) + k3(x3 − x2)
m3x

′′

3 = −k3(x3 − x2) − k4x3

which we can rewrite as a matrix equation:





m1 0 0
0 m2 0
0 0 m3









x′′

1

x′′

2

x′′

3



 =





−(k1 + k2) k2 0
k2 −(k2 + k3) k3

0 k3 −(k3 + k4)









x1

x2

x3





which we can rewrite as:

Mx” = Kx

where the matrix M is called the “mass matrix”, and the matrix K is
called the “stiffness matrix”. The mass matrix is obviously invertible and
easily inverted (just take the reciprocal of the diagonal elements). For ex-
ample in our case its inverse would be:

M−1 =





1
m1

0 0

0 1
m2

0

0 0 1
m3





and so if we multiply both sides of our differential equation by the
inverse of the mass matrix we get:

x′′ = Ax.
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Look familiar? Well, its very similar to what we discussed last time, ex-
cept that the derivative on the left is a second derivative, not a first deriva-
tive. However, if we make the same guess for our solution, veαt (we use
α to denote our constant here instead of λ) and try it out then we get the
relation:

α2v = Av

So, if λ = α2 is a (positive) eigenvalue of our matrix then this gives
us two solutions veαt and ve−αt to our differential equation, where v is an
eigenvector of the eigenvalue λ. But, what do we do if our eigenvalue is
negative, as is frequently the case for all eigenvalues in mechanical sys-
tems? Well, in this case if we define ω =

√
−λ then we get the solution:

x(t) = v(cos (ωt) + i sin (ωt))

where v is an eigenvector of λ. Now, both the real part and the imag-
inary part here are linearly independent solutions, and so we get the two
solutions:

x1(t) = v cos (ωt) and x2(t) = v sin (ωt).

Finally, if the matrix A has λ = 0 as an eigenvalue then the correspond-
ing part of our general solution is:

x0(t) = (a0 + b0)v0

where v0 is a corresponding eigenvector for λ = 0. We won’t be going
over how to derive this today, so just take it as a given.
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So, the eigenvalues are λ = {−25,−100}.

This gives us solutions with ω = 5 and ω = 10.

For the λ = −25 eigenvalue we have the eigenvector equation:

(

−50 25
50 −25

) (

a

b

)

=

(

0
0

)

and so the eigenvector:

(

a

b

)

=

(

1
2

)

works. Similarly for the eigenvalue λ = −100 we get that the vector

(

1
−1

)

is an eigenvector.

The general solution to this system will therefore be:

x(t) = (a1 cos 5t + b1 sin 5t)

(

1
2

)

+ (a2 cos 10t + b2 sin 10t)

(

1
−1

)

where we can see that one component of the solutions oscillates to-
gether, while the other component oscillates apart.

1.3 Forced Oscillations and Resonance

Suppose we add a force term to our differential equation:

Mx′′ = Kx + F

where F is a vector representing the forces on the various masses. Now,
if we multiply both sides of this by M−1 we get:
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x′′ = Ax + f

where f = M−1F.

Now, suppose the force term f is of the form:

f(t) = F0 cos ωt.

If we guess that a particular solution is of the form:

xp(t) = c cos ωt

then

x′′

p(t) = −ω2c cos ωt

and so we get the relation for our differential equation:

(A + ω2I)c = −F0.

In order for this solution to work we just need to solve the above equa-
tion for the vector c, which we can always do providing (A + ω2I) is non-
singular. If the matrix is singular, which means that −ω2 is an eigenvalue
of our matrix A, then we have a situation called resonance, which can be
very bad in physical systems.

To look at this idea in the context of an example, let’s return to our first
example and add the force term:

f(t) =

(

0
50

)

cos ωt.

In this situation our particular solution is xp(t) = c cos ωt where the
vector c is the solution to the system:
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(

ω2 − 75 25
50 ω2 − 50

)

c =

(

0
−50

)

.

Now, if we solve this we get as our values for the components of c:

c1 =
1250

(ω2 − 25)(ω2 − 100)
and c2 =

50(ω2 − 75)

(ω2 − 25)(ω2 − 100)
.

We can see that everything works out fine here except when ω = 5
or ω = 10, where we would have resonance. If our values of ω are close
to these critical values we don’t have resonance, but you can see that the
numbers c1 and c2 could get very large indeed. If you do have a resonance
situation then you need to make some modifications to the method we’re
using here (basically you just multiply your solution by a t), but we won’t
go into those today.

2 Repeated Eigenvalue Solutions

So far we’ve only dealt with solutions of the system:

x′ = Ax

in which A has n distinct eigenvalues if A is an n × n matrix. Now we
will deal with the question of what happens if we have less than n distinct
eigenvalues, which is what happens if any of the roots of the characteristic
polynomial are repeated.

2.1 The Case of an Order 2 Root

Let’s start with the case when we have a second order root λ. There are
two possible cases here. The first possibility is that we have two distinct
(linearly independent) eigenvectors associated with the eigenvalue λ. In
this case, all is good, and we just use these two eigenvectors to create two
distinct solutions.

Example
Find a general solution of the system:
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x′ =





9 4 0
−6 −1 0
6 4 3



 x

The characteristic equation of the matrix A is:

|A − λI| = (5 − λ)(3 − λ)2.

So, A has the distinct eigenvalue λ1 = 5 and the repeated eigenvalue
λ2 = 3 of multiplicity 2.

For the eigenvalue λ1 = 5 the eigenvector equation is:

(A − 5I)v =





4 4 0
−6 −6 0
6 4 −2









a

b

c



 =





0
0
0





which has as an eigenvector

v1 =





1
−1
1



.

Now, as for the eigenvalue λ2 = 3 we have the eigenvector equation:





6 4 0
−6 −4 0
6 4 0









a

b

c



 =





0
0
0





For this eigenvector equation we have two linearly independent eigen-
vectors:

v2 =





0
0
1



 and v3 =





2
−3
0



.
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and so we have a complete set of linearly independent eigenvectors,
and associated solution:

x(t) = c1v1e
5t + c2v2e

3t + c3v3e
3t

Well, that was no problem. Unfortunately, it isn’t always the case
where we can find two linearly independent eigenvectors for the same
eigenvalue. This is the case in the next example.

Example - For the matrix

A =

(

1 −3
3 7

)

we have characteristic equation (λ − 4)2 = 0, and so we have a root of
order 2 at λ = 4. The corresponding eigenvector equation is:

(A − 4I) =

(

−3 −3
3 3

) (

a

b

)

=

(

0
0

)

.

We get one eigenvector:

v =

(

1
−1

)

and that’s it! In this situation we call this eigenvalue defective, and the
defect of this eigenvalue is the difference beween the order of the root, and
the number of linearly independent eigenvectors. In this case λ = 4 would
be a defective eigenvalue with defect 1.

Now, how does this relate to systems of differential equations, and
what do we do in this situation? Well, suppose we have the same matrix
A as above, and we’re given the differential equation:

x′ = Ax
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For this differential equation we have one solution:

(

1
−1

)

e4t

but for a complete set of solutions we’ll need another linearly indepen-
dent solution. How do we get this second solution?

Well, based upon our previous experience we may think that, if v1e
λt

is a solution to our system, then we can get a second solution of the form
v2te

λt. Let’s try this solution out in our differential equation:

v2e
λt + λv2te

λt = Av2te
λt.

Well, unfortunately for this to be true it must be true when t = 0, which
would imply that v2 = 0, which wouldn’t be a linearly independent solu-
tion. So, this approach doesn’t work.

But wait, there’s hope. We don’t have to abandon this method entirely.
Suppose instead we modify it slightly and replace v2t with v1t+ v2, where
v1 is the one eigenvector that we were able to find. Well, if we plug this
into our differential equation we get the relations:

v1e
λt + λv1te

λt + λv2e
λt = Av1te

λt + Av2e
λt.

If we equate the eλt terms and the teλt terms we get the two relations:

(A − λI)v1 = 0
and

(A − λI)v2 = v1.

Now, if we think about this, what does this mean. It means that if
we have a defective eigenvalue with defect 1, we can find two linearly
independent solutions by simply finding a solution to the equation (A −
λI)2v2 = 0 such that (A − λI)v2 6= 0. If we can find such a vector v2, then
we can construct two linearly independent solutions:
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x1(t) = v1e
λt

and
x2(t) = (v1t + v2)e

λt

where v1 is the non-zero vector given by (A − λI)v2.

For our particular situation we have:

(A − 4I)2 =

(

0 0
0 0

)

So, any non-zero vector could potentially work as our vector v2. If we
try

v2 =

(

1
0

)

then we get:

(

−3 −3
3 3

) (

1
0

)

=

(

−3
3

)

So, our linearly independent solutions are:

x1(t) = v1e
4t =

(

−3
3

)

e4t,

and

x2(t) = (v1t + v2)e
4t =

(

−3t + 1
3t

)

e4t.

with corresponding general solution:

x(t) = c1x1(t) + c2x2(t).

We note that our eigenvector v1 is not our original eigenvector, but is a
multiple of it. That’s fine.
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2.2 The General Case

The vector v2 above is an example of something called a generalized eigen-
vector. If λ is an eigenvalue of the matrix A, then a rank r generalized eigen-
vector associated with λ is a vector v such that:

(A − λI)rv = 0 but (A − λI)r−1v 6= 0.

We note that a rank 1 generalized eigenvector is just our standard eigen-
vector, where we treat a matrix raised to the power 0 as the identity matrix.

We define a length k chain of generalized eigenvectors based on the eigenvec-
tor v1 as a set {v1, . . . , vk} of k generalized eigenvectors such that

(A − λI)vk = vk−1

(A − λI)vk−1 = vk−2
...

(A − λI)v2 = v1.

Now, a fundamental theorem of linear algebra states that every n × n

matrix A has n linearly independent generalized eigenvectors. These n

generalized eigenvectors may be arranged in chains, with the sum of the
lengths of the chains associated with a given eigenvalue λ equal to the
multiplicity of λ (a.k.a. the order of the root in the characteristic equation).
However, the structure of these chains can be quite complicated.

The idea behind how we build our solutions is that we calculate the
defect d of our eigenvalue λ and we figure out a solution to the equation:

(A − λI)d+1u = 0.

We then successively multiply by the matrix (A − λI) until the zero
vector is obtained. The sequence gives us a chain of generalized eigenvec-
tors, and from these we build up solutions as follows (assuming there are
k generalized eigenvectors in the chain):
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x1(t) = v1e
λt

x2(t) = (v1t + v2)e
λt

x3(t) = (
1

2
v1t

2 + v2t + v3)e
λt

...
xk(t) =

(

v1
tk−1

(k−1)1
+ · · · + vk−2

t2

2!
+ vk−1t + vk

)

eλt

We then amalgamate all these chains of generalized eigenvectors, and
these gives us our complete set of linearly independent solutions. This
always works. We note that in all the examples we’re doing we’re assum-
ing all our eigenvalues are real, but that assumption isn’t necessary, and
this method works just fine if we have complex eigenvalues, as long as we
allow for complex eigenvectors as well.

Example
Find the general solution of the system:

x′ =





0 1 2
−5 −3 −7
1 0 0



 x

The characteristic equation of the coefficient system is:

|A − λI| =

∣

∣

∣

∣

∣

∣

−λ 1 2
−5 −3 − λ −7
1 0 −λ

∣

∣

∣

∣

∣

∣

= −(λ + 1)3

and so the matrix A has the eigenvalue λ = −1 with multiplicity 3. The
corresponding eigenvector equation is:





1 1 2
−5 −2 −7
1 0 1









a

b

c



 =





0
0
0



.

The only eigenvectors that work here are of the form:

14







a

a

−a





and so the eigenvalue λ = −1 has defect 2. In order to figure out the
generalized eigenvectors, we need to calculate (A − λI)2 and (A − λI)3:

(A − λI)2 =





−2 −1 −3
−2 −1 −3
2 1 3





(A − λI)3 =





0 0 0
0 0 0
0 0 0



.

So, what we want to do is find a vector v such that (A − λI)3v = 0 (not
hard to do) but also such that (A − λI)2v 6= 0 (also not hard to do, but
perhaps not trivial). Let’s try the simplest vector we can think of:

v =





1
0
0



.

If we test this out we get:

(A − λI)3v = 0 (obviously)

(A − λI)2v =





−2 −1 −3
−2 −1 −3
2 1 3









1
0
0



 =





1
−5
1





So, all is good here, and we can use this other vector to get our final
generalized eigenvector:





1 1 2
−5 −2 −7
1 0 1









1
−5
1



 =





−2
−2
2




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Now, using these three generalized eigenvectors we recover our three
linearly independent solutions:

x1(t) =





−2
−2
2



 e−t

x2(t) =





−2
−2
2



 te−t +





1
−5
1



 e−t

x3(t) =





−2
−2
2





1

2
t2e−t +





1
−5
1



 te−t +





1
0
0



 e−t

and so our general solution will be:

x(t) = c1x1(t) + c2x2(t) + c3x3

where the constants c1, c2 and c3 are determined by initial conditions.
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