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1 A Review of Linear Algebra

First note that we’ll be skipping section 4.3. I think we’ve had enough
numerical methods for now. So, we’re moving on to chapter 5, which con-
cerns linear systems of differential equations, and is when we’re going to
start really dealing with the intersection of linear algebra and differential
equations. So, before we start, we’ll begin with a brief refresher of the ba-
sics of linear algebra that you’ll be expected to know. Please note that this
is expected to be a review, and you should be familiar with all the review
material presented here.

The fundamental object we study in linear algebra is the matrix, which
is a rectangular array of numbers:











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn











.

This is an m×n matrix, which means that it has m rows and n columns.
We note that the number of rows and number of columns do not have to
be the same, although frequently for the matrices we deal with they will
be.
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1.1 Basic Operations

Addition of matrices if termwise. We note that we can only add two matri-
ces if they are the same size. Multiplying a matrix by a constant multiplies
every element in the matrix by that constant.

Examples

(

4 1
3 7

)

+

(

2 9
5 6

)

=

(

6 10
8 13

)

4

(

2 9
5 6

)

=

(

8 36
20 24

)

Now, matrix addition and scalar multiplication of matrices satisfy the
following basic properties:

1. A + 0 = A

2. A + B = B + A

3. A + (B + C) = (A + B) + C

4. c(A + B) = cA + cB

5. (c + d)A = cA + dA

where here bold faced capitals (majuscules) represent matrices, lower
case standard letters represent scalars, and 0 represents the zero matrix of
the appropriate size, the zero matrix being the matrix all of whose entries
are 0.

1.2 Dot Products and Matrix Multiplication

Now, 1×n matrices are frequently called vectors or column vectors, while
m × 1 matrices are frequently called row vectors. We can take the dot
product of two vectors (which can be formulated as the product of a row
vector with a column vector) by summing the products of the entries on
the two vectors. So, for example, if:
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a =





3
4
7



 and b =





2
9
6





then a · b = 3 × 2 + 4 × 9 + 7 × 6 = 84.

Now, just as matrices can be added they can be multiplied. The basic
formula for matrix multiplication is:

ABij =

k
∑

r=1

aikbkj

where the matrix AB is the matrix A right multiplied by the matrix B.
We note that for this to work out the number of columns in A must equal
the number of rows in B. We can view the entry ABij as being the dot
product of the ith row of matrix A with the jth column of matrix B.

Note that matrix multiplication is in general not commutative, so it’s
not always the case that AB = BA even when this makes sense (i.e. they’re
both square).

1.3 Inverses

Now, for square matrices we can talk about inverses. For a square matrix
A, its inverse (if it exists) is the unique matrix A−1 such that:

AA−1 = I

where the matrix I is the identity matrix that is a square matrix with the
entry 1 down the diagonal and the entry 0 everywhere else. The identity
matrix is called this because if you multiply it with any other appropriate
(same size) matrix you just get back that matrix. We again stress that these
concepts only make sense for square matrices.
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1.4 Determinants

For a 2 × 2 matrix the determinant is defined as:

det(A) = det

(

a11 a12

a21 a22

)

=

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a12a21

For higher order determinants they can be calculated by expansion. So,
for example:

∣

∣

∣

∣

∣

∣

3 2 1
5 6 2
0 1 4

∣

∣

∣

∣

∣

∣

= 3

∣

∣

∣

∣

6 2
1 4

∣

∣

∣

∣

− 2

∣

∣

∣

∣

5 2
0 4

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

5 6
0 1

∣

∣

∣

∣

= 31

We note that we’d get the same value if we chose to expand along any
row or column.

Now, a big (in some sense the big) theorem of linear algebra states that
a squre matrix is invertible if and only if it has a non-zero determinant.
The concept of determinant as such doesn’t make sense for non-square
matrices.

1.5 Matrix-Valued Functions

The entries of a vector of matrix for that matter don’t have to be constants,
and they can even be functions. So, for example, a vector-valued function
is a vector all of whose components are functions:

x(t) =











x1(t)
x2(t)

...
xn(t)











where the xi(t) are standard (scalar-valued) functions.

In a similar way we can define matrix-valued functions:
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A(t) =











a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

. . .
...

am1(t) am2(t) · · · amn(t)











We can make sense of the derivative of vector or matrix valued func-
tions just by defiing it as the derivative of each entry termwise. If we de-
fine differentiation of matrix-valued functions this way we recover a form
of the product rule:

d(AB)

dt
=

dA

dt
B + A

dB

dt
.

We note that these terms are all matrices, and matrix multiplication is
in general not commutative, so don’t switch these terms around even if
they’re square and you can!

Example

A(t) =

(

et t2 − 2t
cos (4t) 35 + 1

)

The derivative, A′(t), of this matrix is:

A′(t) =

(

et 2t − 2
−4 sin (4t) 3t ln 3

)

1.6 First-Order Linear Systems

As mentioned in sectin 4.2, if we have a first-order linear system of differ-
ential equations:

x′

1 = p11(t)x1 + p12(t)x2 + · · ·+ p1n(t)xn + f1(t)
x′

2 = p21(t)x1 + p12(t)x2 + · · ·+ p2n(t)xn + f2(t)
· · ·

x′

n = pn1(t)x1 + pn2(t)x2 + · · · + pnn(t)xn + fn(t)
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we can express this in a much simpler form as a matrix equation:

dx

dt
= Px + f

where xi1 = xi(t), Pij = pij(t), and fi1 = fi(t).

A solution to this system of differential equations is a vector valued
function x that satisfies the above differential equation. Now, we call such
an equation homogeneous if, you guessed it, f = 0.

1.7 Superposition

Suppose we have a homogeneous differential equation in the form above
and we have solutions x1, x2, . . . , xn. Then any other vector-valued func-
tion of the form:

x = c1x1 + c2x2 + · · ·+ cnxn

is also a solution. This follows immediately from the linearity proper-
ties of, well, linear algebra.

Now, it turns out (not too surprisingly) that any solution of a homoge-
neous differential equation in the form mentioned above can be written as
a linear combination of n linearly independent solutions x1, . . . , xn.

We can determine if n solution vectors are linearly independent by
checking their (surprise!) Wronskian:

W (x1, . . . , xn) = det([x1 · · ·xn]).

Example - First verify that the given vectors are solutions of the given
ssytem. Then use the Wronskian to show that they are linearly indepen-
dent. Finally, write the general solution of the system.

x′ =

(

4 2
−3 −1

)

x

x1 =

(

2et

−3e5

)

, x2 =

(

e2t

−e2t

)
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2 The Eigenvalue Method for Homogeneous Sys-

tems

Suppose we have a system of first-order ODEs with constant coefficients:

x′

1 = a11x1 + a12x2 + · · ·+ a1nxn

x′

2 = a21x1 + a22x2 + · · ·+ a2nxn

...
x′

n = an1x1 + an2x2 + · · ·+ annxn

We know that any solution (general theory) can be written as the linear
combination:

x(t) = c1x1 + · · · + cnxn

where the xi are linearly independent solutions of the system of ODEs.
So, what we want to do is figure out how to find these linearly indepen-
dent solutions.

2.1 The Exponential “Guess”

By analogy with the constant coefficient case for homogeneous ODEs, we
can “guess” a solution of the form:

x(t) =







v1
...

vn






eλt = veλt

where the vi and λ are appropriate scalar constants.

Now, if we write our system as:

x′ = Ax
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then if x = veλt then we get:

λveλt = Aveλt

⇒ λv = Av

which is the “eigenvalue equation” from linear algebra.

2.2 The Eigenvalue Equation

We begin with a theorem from linear algebra. Namely, that Av = λv for
v 6= 0 if and only if det(A − λI) = 0. This theorem determines the possible
values of λ.

In general

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

gives us a “characteristic” nth-order (in λ) polynomial whose roots are
the acceptable values of λ.

Well, if we get n distinct eigenvalues, as these roots are called, then
we get n linearly independent solutions, and we’re done. Now, as you
might imagine, these solutions may be complex conjugates, a situation
we’ll discuss today. We’ll delay what we do if any of the eigenvalues are
repeated until section 5.4.

2.3 All Real Roots

If all the roots are real and distinct, then the problem is as easy as it can be.
How this is handled is best seen in the context of an example.

Example - Find the general solution of:

x′ =

(

2 3
2 1

)

x
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Continued...
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2.4 Complex Eigenvalues

Any complex eigenvalue will also have its conjugate as an eigenvalue:

(A − λI)v = 0
⇒ (A − λI)v = 0

So, v is a corresponding eigenvector to the eigenvalue λ. Now, if λ is
complex then we have:

x(t) = veλt = ve(p+qi)t = (a + bi)ept(cos (qt) + i sin (qt))

which gives us,
x(t) = ept(a cos (qt) − b sin (qt)) + iept(b cos (qt) + a sin (qt))

Now, as 0 = 0 + i0, both the real term and complex term here must be
a solution to the system of ODEs, and these are the same pair of solutions
we’ll get from the eigenvalue’s conjugate. So, our two linearly indepen-
dent solutions, arising from the eigenvalue and its conjugate, are the real
and imaginary parts above.

Example - Find the solution to the given system of ODEs:

x′

1 = x1 − 2x2

x′

2 = 2x1 + x2

x1(0) = 0, x2(0) = 4
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continued...
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