Math 2280 - Lecture 10

Dylan Zwick
Spring 2009

1 Mechanical Vibrations, Forced oscillations, and
Resonance

In this lecture we'll review in greater depth the simple mechanical system
we discussed in our last lecture, and discuss some of the consequences of
adding a forcing function to the system.

Suppose we have a spring-mass system with an external driving force,
pictured schematically below:
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Assuming there is no damping, we can model this system by a differ-
ential equation of the formu

ma” -+ ko= f{1)
Now, suppose our forcing function is of the form f{f) = Fycoswi,

where w # \/ﬂu?; then the method of undetermined coefficients would
lead us to guess a particular solution of the form:



wlt) = Acoswt + Bsinwt.

Now, if we plug this guess into our differential equation we get the
relation:

—Amwteoswt + Ak coswf - Bme? sinwt + Bhsinwt = Fgeoswt

which if we solve for the constants 4 and 3 we get:
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Consequently, our particular solution will be:
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And, in general, our solution will be of the form:

w{t) = ( 5 ‘_}) coswl + oy sinwel -+ ca coswl.

1.1 Beats

it we impose the initial conditions: (0} = 27(0) = 0 then we have:
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So, for our solution we get:
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where if we use the relation

2sin Acos B = cos (A — B} —cos (A4 B)

we get:
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Now, we have if w, =~ w, this solution looks like a higher frequency

wave oscillating within a lower frequency envelope:
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This 18 a situation known as beats.,

1.7 Resonance
What if . = wy? Then, for our particular solution we'd guess:

If we make this guess and work it out with the initial conditions (0} =
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with corresp(mdjng pariicular solubion:
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If we graph this we get:
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This is a situation known as resonance.

2 Electrical Circuits

For an electrical circuit of the type pictures below:
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Kirchoff’s second law tells us that the sum of the voltage drops across

each component must equal 0



] 1
Lo+ RI+ == E(t).

This is a second order linear ODE with constant coefficients! Now, this
is the same mathematics as the mechanical system we just studied, and so

we’ll have the same solutions.
So, for example if E{t} = Egsin (wt) then (if we differentiate both sides

of the above eqution} we get:

LI"+ RI'+ éi = whycoswt.

The complete solution to this will be:

This gives us a solution for 1,,, the transient current that will die our
exponentially.

Now, the particular solution will give us another term called the steady
periodic current. If we run through the math, which is exactly the same as
in the mechanical system, we get:
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The quantity in the denominator of our steady periodic current is de-
noted by the variable Z and is called the impedence of the circuit. The term
wl — 1/{wC) is called the reactance.
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Example - In the circuit below, suppose that L = 2. R = 40, E{t) =
100¢-19 and I{0) = 0. Find the maximum current for ¢ = 0.
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Qur differential equation 1s:

e e s s,

17 , |
2%y 4os = 100770
dt

which if we solve using the methods from chapter 1 we get:
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Using calculus to find the maximum of this function we find that the

maximum current occurs when ¢ = In2 and has a value of 1.254, where A

is the unit of Amperes.



