Math 2280 - Final Exam

University of Utah

Spring 2009

Name:

Laplace Transforms You May Need

$$
\begin{gathered}
\text { Definition } \\
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t . \\
\mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a} \\
\mathcal{L}(\sin (k t))=\frac{k}{s^{2}+k^{2}} \\
\mathcal{L}(\cos (k t))=\frac{s}{s^{2}+k^{2}} \\
\mathcal{L}(\delta(t-a))=e^{-a s} \\
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) .
\end{gathered}
$$

Eigenvalue Rules for Critical Points

$$
\begin{gathered}
\lambda_{1}<\lambda_{2}<0 \quad \text { Stable improper node } \\
\lambda_{1}=\lambda_{2}<0 \quad \text { Stable node or spiral point } \\
\lambda_{1}<0<\lambda_{2} \quad \text { Unstable saddle point } \\
\lambda_{1}=\lambda_{2}>0 \quad \text { Unstable node or spiral point } \\
\lambda_{1}>\lambda_{2}>0 \quad \text { Unstable improper node } \\
\lambda_{2}, \lambda_{2}=a \pm b i,(a<0) \quad \text { Stable spiral point } \\
\lambda_{1}, \lambda_{2}=a \pm b i,(a>0) \quad \text { Unstable spiral point } \\
\lambda_{1}, \lambda_{2}= \pm b i \quad \text { Stable or unstable, center or spiral point }
\end{gathered}
$$

Fourier Series Definition

For a function $f(t)$ of period $2 L$ the Fourier series is:

$$
\begin{aligned}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} & \left(a_{n} \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right)\right) \\
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(\frac{n \pi t}{L}\right) d t
\end{aligned}
$$

Basic Definitions (5 points)

Circle or state the correct answer for the questions about the following differential equation:

$$
x^{2} y^{\prime \prime}-\sin (x) y^{\prime}+y^{3}=e^{2 x}
$$

(1 point) The differential equation is: Linear Nonlinear (1 points) The order of the differential equation is:

For the differential equation:

$$
\left(x^{4}-x\right) y^{(3)}+2 x e^{x} y^{\prime}-3 y=\sqrt{x-\cos (x)}
$$

(1 point) The differential equation is: Linear Nonlinear (1 point) The order of the differential equation is:
(1 point) The corresponding homogeneous equation is:

Separable Equations (5 points)
Find the general solution to the differential equation:

$$
\frac{d y}{d x}=3 \sqrt{x y}
$$

Linear First-Order Equations (5 points)

Find the particular solution to the differential equation below with the given value:

$$
\begin{gathered}
x y^{\prime}+3 y=2 x^{5} ; \\
y(2)=1 .
\end{gathered}
$$

Continued...

Higher Order Linear Differential Equations (5 points)

Find the general solution to the linear differential equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

Nonhomogeneous Linear Differential Equations (10 points)

Find the general solution to the differential equation:

$$
y^{(3)}+4 y^{\prime}=3 x-1
$$

Continued...

Systems of Differential Equations (10 points)

Find the general solution to the system of differential equations:

$$
\begin{aligned}
x_{1}^{\prime} & =5 x_{1}+x_{2}+3 x_{3} \\
x_{2}^{\prime} & =x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime} & =3 x_{1}+x_{2}+5 x_{3}
\end{aligned}
$$

Hint : $\lambda=2$ is an eigenvalue of the coefficient matrix, and all eigenvalues are real.

Continued...

Continued...

Systems of Differential Equations with Repeated Eigenvalues (5 points)
Find the general solution to the system of differential equations:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right) \mathbf{x}
$$

Continued...

Laplace Transforms (5 points)

Using the definition of the Laplace transform calculate the Laplace transform of the function:

$$
f(t)=e^{3 t+1}
$$

Laplace Transforms and Differential Equations (8 points)
Find the particular solution to the differential equation:

$$
\begin{gathered}
x^{\prime \prime}+4 x=\delta(t)+\delta(t-\pi) ; \\
x(0)=x^{\prime}(0)=0 .
\end{gathered}
$$

Continued...

Nonlinear Systems (7 points)

Determine the location of the critical point $\left(x_{0}, y_{0}\right)$ for the system given below, and classify the critical point as to its type and stability.

$$
\begin{gathered}
\frac{d x}{d t}=x+y-7 \\
\frac{d y}{d t}=3 x-y-5 .
\end{gathered}
$$

Continued...

More Nonlinear Systems (10 points)

For the nonlinear system below, determine all critical points, and classify each according to its type and stability.

$$
\begin{gathered}
\frac{d x}{d t}=3 x-x^{2}+\frac{1}{2} x y \\
\frac{d y}{d t}=\frac{1}{5} x y-y .
\end{gathered}
$$

Continued...

Continued...

Ordinary, Regular, and Irregular Points (5 points)

Determine if the point $x=0$ in the following second order differential equation is an ordinary point, a regular singular point, or an irregular singular point.

$$
x^{3} y^{\prime \prime}+6 \sin (x) y^{\prime}+6 x y=0 .
$$

Power Series Solutions (10 points)

Find a general solution in powers of x to the differential equation:

$$
\left(x^{2}+1\right) y^{\prime \prime}+6 x y^{\prime}+4 y=0 .
$$

Continued...

Continued...

Fourier Series (10 points)

The values of the periodic function $f(t)$ in one full period are given. Find the function's Fourier series.

$$
f(t)=\left\{\begin{array}{cc}
-1 & -2<t<0 \\
1 & 0<t<2 \\
0 & t=\{-2,0\}
\end{array}\right.
$$

Extra Credit (2 points) - Use this solution and what you know about Fourier series to deduce the famous Leibniz formula for π.

Continued...

