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Laplace Transforms You May Need
Definition
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Eigenvalue Rules for Critical Points
A1 < A2 <0 Stable improper node
A1 = Ay <0 Stable node or spiral point
A1 <0 < Xy Unstable saddle point
A1 = A2 >0 Unstable node or spiral point
A1 > A2 >0 Unstable improper node
A2, Ay = a£bi, (@ <0) Stable spiral point
A, Ay = a£bi, (a >0) Unstable spiral point

A1, Ag = £bi  Stable or unstable, center or spiral point



Fourier Series Definition

For a function f(¢) of period 2L the Fourier series is:
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Basic Definitions (5 points)

Circle or state the correct answer for the questions about the follow-
ing differential equation:

332'3/” — sin (x)y' + y3 — 62:(:

(1 point) The differential equationis: Linear = Nonlinear

(1 points) The order of the differential equation is:

For the differential equation:

(z* — 2)y® + 2ze"y' — 3y = \/z — cos ()

(1 point) The differential equationis: Linear = Nonlinear
(1 point) The order of the differential equation is:

(1 point) The corresponding homogeneous equation is:



Separable Equations (5 points)

Find the general solution to the differential equation:

dy
N
dx Ty



Linear First-Order Equations (5 points)

Find the particular solution to the differential equation below with
the given value:

vy + 3y = 227

y(2) =1



Continued...



Higher Order Linear Differential Equations (5 points)

Find the general solution to the linear differential equation:

y" — 3y + 2y = 0.



Nonhomogeneous Linear Differential Equations (10 points)

Find the general solution to the differential equation:

y® + 4y’ =3z — 1.



Continued...
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Systems of Differential Equations (10 points)

Find the general solution to the system of differential equations:

¥y = bry + x2 + 313
vy = x1 + Ty + a3
Z’g = 31’1 + X9 + 5.7}3

Hint : A\ = 2 is an eigenvalue of the coefficient matrix, and all eigen-
values are real.
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Systems of Differential Equations with Repeated Eigenvalues (5 points)

Find the general solution to the system of differential equations:

X = 1_4x
L4 9
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Laplace Transforms (5 points)

Using the definition of the Laplace transform calculate the Laplace
transform of the function:

Ft) = e+,
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Laplace Transforms and Differential Equations (8 points)

Find the particular solution to the differential equation:

' +4x =46(t) +0(t —m);
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Nonlinear Systems (7 points)
Determine the location of the critical point (z¢,yo) for the system

given below, and classify the critical point as to its type and stability.

dx
E—Jf‘i‘y_?,
dy
i
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More Nonlinear Systems (10 points)

For the nonlinear system below, determine all critical points, and
classify each according to its type and stability.

d 1
d—f:3x—x2+§xy,
dy 1
— = —xy — Y.
a5
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Ordinary, Regular, and Irregular Points (5 points)

Determine if the point z = 0 in the following second order differ-
ential equation is an ordinary point, a regular singular point, or an
irregular singular point.

23y" + 6sin (2)y’ + 62y = 0.
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Power Series Solutions (10 points)

Find a general solution in powers of z to the differential equation:

(2% 4+ 1)y" + 6y’ + 4y = 0.
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Fourier Series (10 points)

The values of the periodic function f(t) in one full period are given.
Find the function’s Fourier series.

-1 -2<t<0
f(t) = 1 0<t<2
0 t={-2,0}

Extra Credit (2 points) - Use this solution and what you know about
Fourier series to deduce the famous Leibniz formula for 7.
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