Math 2280-Quiz 3

Instructor: Dylan Zwick

Spring 2008

Name:

\qquad

50 Points Possible

Note - For credit you must show your work on all of these problems. A solution, even a correct solution, with no work or essentially no work will receive very little credit.

1. Calculate the following: (9 points)
a) Using the formal definition of the Laplace transform (i.e. calculate the integral) what is the Laplace transform of the function:

$$
f(t)=t-2 e^{3 t}
$$

also state the domain of the Laplace transform. (3 points)
b) Calculate the convolution $f(t) * g(t)$ of the functions:

$$
f(t)=t^{2} \text { and } f(t)=\cos t
$$

(3 points)
c) Again using the formal definition calculate the Laplace transform:

$$
f(t)=t^{2}
$$

again state the domain of the Laplace transform. (3 points)
2. Solve the initial value problem for the function $x(t)$:

$$
\begin{aligned}
x^{\prime \prime}+4 x^{\prime}+5 x & =\delta(t-\pi)+\delta(t-2 \pi) ; \\
x(0) & =0, x^{\prime}(0)=2 .
\end{aligned}
$$

(8 points)

Continued

3. Determine if $x=0$ is an ordinary, regular singular, or irregular singular point in each of the following differential equations: (9 points)
a) (3 points)

$$
3 x^{3} y^{\prime \prime}+2 x^{2} y^{\prime}+\left(1-x^{2}\right) y=0
$$

b) (3 points)

$$
x^{2}\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0
$$

c) (3 points)

$$
x y^{\prime \prime}+x^{2} y^{\prime}+\left(e^{x}-1\right) y=0
$$

4. Solve the following second-order ODE using power series or Frobenius series methods:

$$
y^{\prime \prime}+x^{2} y^{\prime}+2 x y=0
$$

(8 points)

Continued

5. Solve the following second-order ODE using power series or Frobenius series methods:

$$
2 x y^{\prime \prime}-y^{\prime}-y=0
$$

(8 points)

Continued

6. Find the odd extension of the function defined below, and graph the odd extension. Then, calculate the corresponding Fourier series (sine series) representation of the odd extension.

$$
f(t)=t^{2}, 0<t<\pi
$$

(8 points)

Continued

7. (Extra Credit) Derive the following equivalence:

$$
\gamma(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

where the product on the right is over prime numbers p. In your derivation you can use the relation:

$$
\sum_{k=0}^{\infty} \frac{1}{p^{k s}}=\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

(5 points)

Continued

