Math 2280 - Exam 2

University of Utah

Spring 2009

Name:

Existance and Uniqueness - State whether we're certain (based on our existance and uniqueness theorem for linear differential equations) a unique solution exists for the following differential equations on the given interval. Explain why. (5 points)

1. (1 point)

$$
y^{\prime \prime}-x\left(y^{\prime}\right)^{2}+e^{x} y=2 x^{2}-5
$$

for all $x \in \mathbb{R}$.
2. (2 points)

$$
\begin{gathered}
x y^{\prime \prime}-e^{x} y^{\prime}+\cos x y=25 x^{3} ; \\
\text { for all } x>1
\end{gathered}
$$

3. (2 points)

$$
\begin{gathered}
x y^{\prime \prime}-e^{x} y^{\prime}+\cos x y=25 x^{3} ; \\
\text { for all } x<1
\end{gathered}
$$

Linear Differential Equations with Constant Coefficients (10 points)

1. Find the general solution to the following homogeneous differential equation: (3 points)

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

2. Use this result to calculate the general solution to the nonhomogeneous differential equation: (4 points)

$$
y^{\prime \prime}-y^{\prime}-6 y=2 x+e^{-2 x}
$$

3. Find the unique solution to the following initial value problem: (3 points)

$$
\begin{gathered}
y^{\prime \prime}-y^{\prime}-6 y=2 x+e^{-2 x} \\
y(0)=2, y^{\prime}(0)=\frac{7}{15}
\end{gathered}
$$

Wronskians - Calculate the Wronskian for the following sets of functions, and determine if the functions are linearly independent. If the functions are not linearly independent, demonstrate a non-trivial linear combination that equals 0 . (5 points)

1. (2 points)

$$
\begin{gathered}
y_{1}=e^{3 x} \\
y_{2}=x e^{3 x}
\end{gathered}
$$

2. (3 points)

$$
\begin{gathered}
y_{1}=\sin 2 x \\
y_{2}=\sin x \cos x
\end{gathered}
$$

Converting to First-Order Systems - Convert the following system of equations into an equivlent system of first-order equations: (5 points)

$$
\begin{gathered}
x^{(3)}=x^{\prime \prime}-2 x^{\prime}+5 y^{\prime}+2 x+1 \\
y^{\prime \prime}=x^{\prime}+5 x-14 y^{\prime}
\end{gathered}
$$

Circuits Calculate the steady periodic current for the circuit pictured below: (10 points)
with the following parameters: $R=200 \Omega, L=5 H, C=.001 F$, and $E(t)=100 \sin (10 t) V$.

Continued...

First-Order Systems Solve the system of first-order differential equations given below: (10 points)

$$
\begin{gathered}
x_{1}^{\prime}=3 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime}=-5 x_{1}-3 x_{2}-x_{3} \\
x_{3}^{\prime}=5 x_{1}+5 x_{2}+3 x_{3}
\end{gathered}
$$

Method of Undetermined Coefficients Find the form of the particular solution (but don't calculate the constants) for the nonhomogeneous linear differential equation given below using the method of undetermined coefficients: (5 points)

$$
y^{(4)}-2 y^{\prime \prime}+3 y^{\prime}-10 y=x^{3} e^{-x} \cos 4 x
$$

