
Quiz 1 Review Notes

Math 2280

Spring 2008

Disclaimer - These notes are designed to be just that, notes, for a review
of what we’ve studied thus far in class. They are certainly not exhaustive,
but will provide an outline of the material that you will need to know for
the first quiz. They are intended as a study aid, but they should definitely
not be the only thing you study. I also cannot guarantee they are free
from typos, either in the exposition or in the equations. Please refer to the
appropriate equations in the textbook while you’re studying to make sure
the equations in these notes are free of typos, and if you find a typo please
contact me and let me know. If there are any sections upon which you’re
unclear or think you need more information, please read the appropriate
section of the book or you lectures notes. If after doing this it’s still unclear
please ask me, either at my office, via email, or at the review session. If
you think you need further practice in any area I’d recommend working
the recommended problems in the textbook from the sections that cover
the material on which you’re having trouble.

1 The Basics

An ordinary differential equation is an equation indicating a relation be-
tween a function of one variable and its derivatives. For example:

(y′′)2 + 3x = y

or
4y(3) + 2y = 5.

The goal in differential equations is to find the function that satisfies
the given ordinary differential equation. Frequently there are whole fam-
ilies of functions that will satisfy a given differential equation, and so to
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pick out a particular solution initial conditions are specified. The initial
conditions are usually the value of the function and a certain number of
the functions derivatives at a given point of interest.

1.1 Order

The order of a ordinary differential equation is the maximum derivative
that appears in the defining equation. So, for example, in the two example
ODEs given above the orders are 2 and 3, respectively.

1.2 Linear ODEs

A linear ODE is an ODE in the form:

an(x)y(n) + an−1(x)y(n−1) + · · · + a1(x)y
′

+ a0(x)y = f(x)

where the ai(x) and f(x) represent functions that are all continuous on
some interval of interest. We usually assume that the function an(x) is also
non-zero on this interval of interest, allowing us to divide both sides of the
equation by it to get the equivalent “monic” equation:

y(n) + bn−1(x)y(n−1) + · · ·+ b1(x)y
′

+ b0(x)y = g(x)

where bi(x) =
ai(x)

an(x)
and g(x) =

f(x)

an(x)
.

We call a linear ODE homogenous if f(x) = 0 and we call is a linear ODE
with constant coefficients if all the functions ai(x) are constants.

2 Theory

There are a couple of big existance and uniqueness theorems that you
should know how to apply, if not how to prove. There are:

• Suppose that both the function f(x, y) and its partial derivative
∂f

∂y
are continuous on some rectangle R in the xy-plane that contains the
point (a, b) in its interior. Then, for some open interval I containing
the point a, the initial value problem
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dy

dx
= f(x, y), y(a) = b

has one and only one solution that is defined on some interval I that
contains the point x. (Note that this interval may not be as wide as
the width of the rectangle R. I could have a longer or shorter width
than R)

• Suppose that the functions an−1, an−2, . . . , a1, a0 and f are continuous
on the open interval I containing the point a. Then, given n numbers
b0, b1, . . . , bn−1 the nth-order linear equation:

y(n) + an−1(x)y(n−1) + · · ·a1(x)y′ + a0(x)y = f(x)

has a unique (one and only one) solution on the entire interval I that
satisfies the n initial conditions

y(a) = b0, y
′(a) = b1, . . . , y

(n−1)(a) = bn−1

For an example of how the first theorem is applied check out example
6 from section 1.3 of the textbook. For an example of the second theorem
for the special case of a first order linear ODE check out example 3 from
section 1.5 of the text. For an example in the more general context check
out examples 1 and 2 from section 3.2 of the text.

3 First-Order ODEs

We’ve learned some techniques for solving certain types of first order
ODEs. You should know these methods and how to use them for the quiz.

3.1 Separable First-Order ODEs

A separable first-order ODE is an ODE that can be written in the form:

dy

dx
= f(x)g(y)

3



if this is the case then we can solve for y by rearranging and then inte-
grating the above equation:

∫

dy

g(y)
=

∫

f(x)dx

and then solving for y.

For example, the ODE:

dy

dx
= y

is separable with f(x) = 1 and g(y) = y. Separating this and integrating
we get:

∫

dy

y
=

∫

dx

→ ln |y| = x + C

→ y = Cex

where the two constants C above would be different, but we’re using
the convention of just reusing the same letter when you turn one unknown
constant into another, still unknown, constant. There are many more sep-
arable and more complicated ODEs. These can be found in section 1.4 of
the text.

3.2 Linear First-Order Equations

A linear first-order equation is an equation of the form:

dy

dx
+ p(x)y = f(x).

Any equation of this form can be solved by multiplying both sides by

the integrating factor ρ(x) = e
∫

p(x)dx to get:

ρ(x)
dy

dx
+ ρ(x)p(x)y = ρ(x)f(x)

→ d

dx
(ρ(x)y) = ρ(x)f(x)

and so:

y =
1

ρ(x)

∫

ρ(x)f(x)dx
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So, for example, if we’re given the ODE:

xy′ + 3y = x3

we can rearrange this to form:

y′ +
3

x
y = x2

Note that this breaks our solution up into two intervals, one for x > 0
and one for x < 0, because these are the intervals on which the division
above doesn’t cause problems (doesn’t lead to division by 0). Solving this
ODE we get:

ρ(x) = e
∫

3

x
dx = e3 ln x = x3

and so

y =
1

x3

∫

x5dx =
x6

6x3
+

C

x3
=

x3

6
+

C

x3

Now, if we’re given the initial condition y(1) = 10 we get:

y(1) =
1

6
+ C = 10

and so

C = 10 − 1

6
=

59

6

which gives us a final solution:

y(x) =
x3

6
+

59

6x3

We note that this solution will be unique for this differential equation
and this initial conditions on the interval x > 0.

More problems and further explanation of this method can be found in
section 1.5 of the text.
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3.3 Substitution Methods

Frequently we can turn a differential equation that we don’t immediately
know how to solve into a more familiar differential equation that we do
know how to solve by a substitution. This method is analogous to u substi-
tution in single variable calculus. Basically, this method involves making
a substitution of the form v = α(x, y). There are no absolute rules for using
this method, and sometimes it will work and sometimes it won’t. There
are a few particular situations where this method is particularly useful,
and so you should know these.

3.3.1 Homogenous Equations

A homogenous first-order differential equation is one that can be written in
the form:

dy

dx
= F (

y

x
).

If this is the case then we can make the substitution v =
y

x
, which gives

us the corresponding relations:

y = vx and
dy

dx
= v + x

dv

dx

and we transform the above equation into a separable equation:

x
dv

dx
= F (v) − v

which we can then solve for v, and after that we can solve for y.

3.3.2 Bernoulli Equations

A first-order differential equation of the form:

dy

dx
+ P (x)y = Q(x)yn

is called a Bernoulli equation. If n = 0 or n = 1 we can solve this using
previous methods. If n > 1 then we can make the substitution v = y1−n,
which turns the equation into the linear equation:
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dv

dx
+ (1 − n)P (x)v = (1 − n)Q(x)

which we then can solve using previously covered methods.

3.3.3 Reducible Second Order Equations

If we have a second-order ODE:

F (x, y, y′, y′′) = 0

where the independent variable y is missing from the equation, then
the substitution p = y′, and hence p′ = y′′ will turn the equation into a
first-order ODE, which we can then solve for p. From p we can integrate
to get y.

If the independent variable x is missing then if we make the substitu-
tion p = y′ we get the relation:

p = y′, y′′ = p
dp

dy

and our equation becomes an equation of the form:

F (y, p, p
dp

dy
) = 0

which is a first order equation that we can solve for p, and from p we
can solve for x, and from x we can, perhaps, solve for y.

3.4 Exact Equations

An exact ODE is a first order differential equation that can be written in
the form:

M(x, y)dx + N(x, y)dy = 0

where the function M and N satisfy the relations:

∂M

∂y
=

∂N

∂x
.
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If this is the case then there is an implicit solution F to the ODE that
satisfies:

∂F

∂x
= M and

∂F

∂y
= N .

For an example of how this is done check out example 9 of section 1.6
from the text. In general for more about substitution methods and exact
ODEs check out section 1.6 from the text.

4 Further Topics in First-Order ODEs

Here we’ll take a look at a couple of further topics in ODEs that we inves-
tigated.

4.1 Equilibrium Solutions and Stability

If we have a first-order ODE of the form:

dy

dx
= f(y)

then any of the “roots” of the function f(y), in other words the points
c where f(c) = 0, present particularly simple solutions. Namely, if we’re
given the initial condition y(0) = c then the constant solution y(x) = c

satisfies the differential equation! This is called an equilibrium solution
to the ODE, and frequently in equations of this type the other solutions
will, as x increases, either go off to ±∞ or approach one of the equilibrium
solutions.

Now, these equilibrium solutions can be either stable or unstable. A
stable solution means, basically, that if you move away from it a slight
amount in any direction you’ll return back to the solution. An unstable
solution is one where if you move away in one or both directions you fall
away and don’t come back.

For example, if we have the first-order ODE:

dy

dx
= ky(y − M)
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this equation has two equilibrium solutions, y = 0 and y = M . If we
solve this ODE we get the solution:

y(x) =
My0

y0 + (M − y0)ekMt

Now, if we graph this solutions for different values of the initial condi-
tion y0 we get solutions curves that look like:

We can see that around the equilibrium point M we have an unstable
equilibrium, while around the critical point 0 we have a stable equilib-
rium. This can be represented schematically by something called a phase
diagram. This is a one-dimensional diagram where values on the axis rep-
resent different values of the variable y. We mark off where the equilib-
rium points are, and then in between these points we indicate what the

sign of the derivative
dy

dx
is. We draw arrows to the right if the sign is

positive, and arrows to the left is the sign is negative. Any equilibrium
point with two arrows pointing into it is a stable equilibrium point. Any
other equilibrium point is an unstable equilibrium point. For example, the
phase diagram for our above differential equation would be:

9



which tells us schematically what the earlier picture also told us. Namely,
that 0 is a stable equilibrium point, while M is an unstable equilibrium
point.

4.2 Euler’s Method

Euler’s method is the first numerical method we’ve learned so far, and it’s
pretty intuitive and easy to use. Basically, the idea is that you’re given
some first order ODE in the form:

dy

dx
= f(x, y)

and an initial value y(x0) = y0. From this initial condition we estimate
further values of the function y(x) using the algorithm:

ỹ(x + h) = ỹ(x) + h × f(x, ỹ(x))

where ỹ is out estimate of y, ỹ(x0) = y0 is our starting value, and h is
a parameter called our step size. In general, the approximations ỹ will be
closer to the actual function y the smaller the step size h is. For a descrip-
tion of the motivation for this algorithm check out section 2.4 of the text.
For an example of how it’s applied check out example 1 from that section.

5 Higher-Order ODEs

We’ve primarily dealt with linear higher-order ODEs, as they’re by far the
most tractable of the higher-order ODEs. They’re the ones you’ll need to
know how to solve for the quiz.

5.1 Basic Concepts

For a linear ODE of the form:

y(n) + an−1(x)y(n−1) + · · ·a1(x)y
′

+ a0(x)y = f(x)

we call the associated equation:

y(n) + an−1(x)y(n−1) + · · ·a1(x)y
′

+ a0(x)y = 0
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the associated homogenous linear ODE. For a n-th order linear ODE the
associated homogenous ODE will have n linearly independent solutions
{y1, y2, y3, . . . , yn} and so any solution to the homogenous equation can be
written as:

yh = c1y1 + c2y2 + · · · + cnyn

where the coefficients ci would be determined by the n initial condi-
tions of the system.

The final solution to the linear ODE will be the sum of the homogenous
solution and a particular solution yp. The particular solution will be a
function that actually solves the full ODE. So, the final solution y will be
of the form:

y = yp + yh

where, as mentioned before, whatever initial conditions there are will
be handled by assigning different values to the the various coefficients of
the homogenous solution.

5.2 Linear Independence

We mentioned above that the homogenous solution will consist of the lin-
ear combination of n linearly independent solutions to the homogenous
equation. Well, what does that mean? Linear independence means that if:

c1y1 + c2y2 + · · · + cnyn = 0

for all input values x then the coefficients above must all be 0. We can
check to see if a set of functions is linearly independent by calculating the
Wronskian for those functions. The Wronskian is defined as:

W (y1, y2, . . . , yn) = det
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where we note that the Wronskian is itself a function. If the Wronskian
is ever equal to 0 on our interval of interest then it is equal to 0 on that entire
interval and the functions are not linearly independent. Conversely, if the
Wronskian is not 0 anywhere on the interval then it’s not 0 everywhere on
the interval and the functions {y1, y2, . . . , yn} are linearly independent.

Note that for a second-order linear ODE we don’t have to go through
the whole Wronskian business. Two functions are linearly independent if
one is not a constant multiple of the other.

5.3 Homogenous Equations with Constant Coefficients

When the functions ai(x) in our linear homogenous ODE are constants
we can actually always solve the ODE. The basic idea is that if we have a
differential equations in the form:

y(n) + an−1y
(n−1) + an−2y

(n−2) + · · ·a1y
′ + a0y = 0

we get the associated “characteristic equation”:

rn + an−1r
n−1 + · · ·a1r + a0 = 0.

Now, what we need to do is to find the roots of this equation. The
solution to our ODE will just be exponentials with coefficients in the ex-
ponentials equal to the roots of our characteristic equation. If we have a
repeated root, we need to take the solution we’d get with a single root and
multiply it by x, x2, etc... until we have a number of independent solutions
equal to the order of the repeated root. If we have a complex root we’ll al-
ways have its complex conjugate as a root as well, and the two complex
conjugate roots will give us (possibly) a real exponential term multiplied
by a sine function and a cosine function. This is difficult to understand
when stated abstractly, but it’s not that hard to do in practice. If you do 10
or so of them you should be in excellent shape. Here’s an example of one:

What are the solutions to the differential equation:

y(5) + 3y(4) + 2y(3) + 6y′′ + y′ + 3y = 0

the associated characteristic equation is:

r5 + 3r4 + 2r3 + 6r2 + r + 3 = 0
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which factors as (r2+1)2(r+3) = 0 and so it has roots {−3, i,−i}, where
the two complex roots are repeated. So, the homogenous solutions will be
of the form:

y = c1e
−3x + c2 cos x + c3 sin x + c4x cos x + c5x sin x.

A more detailed explanation of the method, along with many more
examples and practice problems, can be found in section 3.3 of the text.

5.4 Nonhomogenous Linear ODEs with Constant Coeffi-

cients

We learned two major techniques for dealing with nonhomogenous linear
ODEs with constant coefficients. The first is the method of undertermined
coefficients, which works if our function f(x) is of some particular forms.
The other is the method of variation of paramters, which works whenever
we can solve the corresponding homogenous equation, but can be kind of
difficult.

5.4.1 Method of Undetermined Coefficients

This method works when the function f(x) in the equation:

y(n) + an−1y
(n−1) + · · ·a1y

′ + a0y = f(x)

is either a polynomial, an exponential, or a trigonometric function. If
it’s a polynomial, you just guess that the particular solution is a polyno-
mial of the same order. If it’s an exponential, you just guess the particular
solution is an exponential of the same form. If it’s a cosine or sine, you just
guess the particular solution is the sum of cosines and sines. If the function
f(x) is a combination, either multiplied or added, of solutions of this form,
you just guess the particular solution is a combination of the same form.
The one caveat is that if one of your guesses is not linearly independent
of your homogenous solution, you need to keep multiplying it by x until
it is. This is a whirlwind tour through the method, so I’d suggest reading
through it again in section 3.5 if this is confusing for you. It’s really not
that hard, you just need to do some problems to get the hang of it.
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5.4.2 Method of Variation of Paramters

This is a method that works in general. However, it’s kind of technically
complicated, so we only covered the method for second order linear ODEs.
Say you’ve got a second order ODE, and you know the homogenous solu-
tion:

yh = c1y1 + c2y2

then you guess that the particular solution will be of the form:

yp = u1y1 + u2y2

and figure out what the functions u1 and u2 are. We derived in class,
and it’s derived in the textbook, that it works out to be:

yp(x) = y1(x)
∫

y2(x)f(x)

W (y1, y2)
dx + y2(x)

∫

y1(x)f(x)

W (y1, y2)
dx

As mentioned, both of these methods are covered in section 3.5 of the
textbook, which I’d recommend reading through once again before the
test. I’d also recommend working some of the recommended practice
problems.

6 Applications

A few of the sections in the textbook covered some major applications
of differential equations, especially to population models and mechanical
systems.

6.1 Population Models

There are two major population models that we discussed. The first is the
exponential growth model:

dP

dt
= kP

which predicts an exponentially increasing population. The other, more
realistic population model, is the logistic population model:
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dP

dt
= kP (M − P )

which has a solution that starts out growing quickly (if the initial con-
ditions is between 0 and M) but then slows down and asymptotically ap-
proaches M as time goes on. Note that this equation is in the form of the
equations we used for studying equilibrium solutions and stability, and so
those methods and ideas can be applied to the study of population mod-
els. More on this can be found in section 2.1 of the textbook.

6.2 Mechanical Models

The basic equations for all our mechanical models is Newton’s second law,
which states that the sum of the forces acting on an object is equal to the ob-
ject’s mass multiplied by its acceleration. Now, acceleration is the deriva-
tive of velocity, and velocity is the derivative of position, so frequently
when modeling mechanical systems we end up with first or second order
differential equations.

Here are some examples:

Assume that a body moving with velocity v encounters resistance of

the form
dv

dt
= −kv

3

2 . Show that

v(t) =
4v0

(kt
√

v0 + 2)2
.

Well, we’re told that
dv

dt
= −kv

3

2 , and so we get a separable differential

equation:

dv

v
3

2

= −kdt

which if we integrate both sides we get:
−2√

v
= −kt + C

Now, if we solve this for v we get:

v(t) =
4

(kt + C)2
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and if v(0) = v0 we get v0 =
4

C2
and so C =

2√
v0

. If we plug this in we

get:

v(t) =
4

(kt + 2√
v0

)2
=

4v0

(kt
√

v0 + 2)2

which is what we wanted to prove. More problems of this type and
explanation of mechanical systems can be found in section 2.3.

Now, the mechanical system with which we dealt most closely was the
mass-spring-dashpot system pictured below. If we treat the equilitribum
position as x = 0 then an analysis of these forces yields the second-order
linear homogenous differential equation:

m
d2x

dt2
+ c

dx

dt
+ kx = 0

which has three types of solutions, depending on the roots of the char-
acteristic equation, which are determined by the coefficients m, c, k. The
three possitiblities are called overdamped, critically damped, and under-
damped. When we have an underdamed system, we get oscillations. Much
more explanation of this system can be found in section 3.4 of the text.
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