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1. (1 point) What is the order of the differential equation in terms of the
function y:
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2. (4 points)
Find the critical points of the given autonomous differential equa-

tion. Then, draw the phase diagram for the differential equation and
determine for each critical point if it is stable or unstable.
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For problems 3-5 solve the given ODE. If initial conditions are speci-
fied, find the solution that matches the initial conditions. If no initial
conditions are specified, find the general form of the solution.

3. (5 points)
dy

o 42y —yand y(1) = —3



4. (5 points)

(1+2)y +y=cosxand y(0) =1



5. (5 points) Note - You may express the solution here implicitly.

(14 ye™)dx + (2y + ze™)dy =0



6. (5 points) Solve for the general form of the function y(z).

9y® +12y" + 4y =0



7. (5 points) Find a particular solution y, to the ODE:



8. (5 points) Are we guaranteed existance and uniqueness of the given
differential equation in a neighborhood of the given point? Why or
why not?
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9. (5 points) Suppose that a body moves through a resisting medium

. . . . . v
with resistance proportional to its velocity v, so that i —kv. Show

that its velocity and position at time ¢ are given by:
kt

v(t) = voe~

2(t) = 20 + (“—]j) (1= eH),

Where vy and z are the respective velocity and position at time ¢ = 0.



10. (5 points) For the mechanical system pictured below with m = 2,
¢ = 3 and k£ = 1 what is the equation x(t) that describes the motion
of the mass around its equilibrium point if 2(0) = 2 and 2/(0) = 0? Is
the system overdamped, underdamped, or critically damped?
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11. (5 points) Use Euler’s method to fill in the rest of the table below for
the differential equation below with the given initial conditions and
step size. Note - The y,, in the table below represent your estimated
values given by Euler’s method.

y/:2xy2,,
y(0) =1;
h=.5

n| x| yn
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12. (5 points) Extra Credit.

In the derivation of the variation of parameters method for second-
order linear ODEs we learned that our particular solution will be of
the form:

Yp = Ury1 + U2y2
where y; and y, are two linearly independent solutions to the cor-
responding homogenous solution, and «; and u, are undetermined

functions. We derived that the functions u; and u, would have to
satisfy the form:

uhyy 4+ uhye =0

uhyt +uhys = f(x).

We solved this system to get:

e, p@fe)
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where W represents the Wronskian. Explain how we get from the
system of two equations above to the given solutions. Note - Write
on the next page if you run out of room here.
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