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1. Introduction

We’ve already talked about affine varieties, which are essentially con-
structed by taking the quotient of a polynomial ring by an ideal. Of course,
ideals come in many flavors, sometimes carrying a great deal of special in-
formation. It is therefore sometimes (often!) helpful to consider alternative
constructions for use in these special cases. Naturally, we will want there to
be some compatibility between the original construction and these special-
ized constructions, and indeed for what we are doing today this will be the
case.

2. Graded rings

We first need to introduce some additional algebraic language. Let S be
a ring. We say that S is a graded ring if (S,+) has a decomposition (as an
abelian group) of the form

S =
⊕
d≥0

Sd,

where for any d, e ≥ 0 we have Sd ·Se ⊆ Sd+e. Put another way, S is graded
if we can split up S into different “tiers” where, if a, b ∈ S are both in Sd,
then a+ b is also in Sd, and if a ∈ Sd and b ∈ Se, then ab ∈ Sd+e.

Graded rings arise quite often. One good sign that you’re working with
a graded ring is if the elements of your ring have a notion of “degree” that
behaves like the degree of a polynomial. Indeed, this will be the situation
we are primarily concerned with.

Let S = k[x0, ..., xn]. We’ll show that this is a graded ring. For d ≥ 0, let

Sd = k
{
xi00 · · ·x

in
n : i0 + · · ·+ in = d

}
,

where we interpret the right hand side to mean “all k-linear sums of monomi-
als whose total degree is d.” For instance, 4x2

0x
5
3 + 2x0x1x2x

4
3 ∈ S7. For any

fixed d, Sd is an abelian group under addition, and certainly S =
⊕

d≥0 Sd.
Finally, if f(x) ∈ Sd and g(x) ∈ Se, then every term in f(x) has total degree
d, and every term in g(x) has total degree e, so that every term of f(x)g(x)
has total degree d+ e. Thus S is a graded ring.
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We’ll now pause to introduce a useful bit of notation. Let

xα0
0 · · ·x

αn
n

be a monomial in S. Let α = (α0, ..., αn). Notationally, we let

xα = xi00 · · ·x
in
n .

If one defines the convention that α + β = (α0 + β0, ..., αn + βn), then we
obtain the pleasing identity

xα · xβ = xα+β.

One often writes ‖α‖ = α0+· · ·+αn, so that we can express the fact that S is
graded by degree in the following way: if xα ∈ Sd and xβ ∈ Se, then ‖α‖ = d
and ‖β‖ = e, so that ‖α+ β‖ = d+ e, and thus xα · xβ = xα+β ∈ Sd+e.

If S is graded, we say an element f ∈ S is homogeneous if f ∈ Sd for
some d ≥ 0. Writing f =

∑N
i=1 fix

αi , f is homogeneous if and only if
‖αi‖ = ‖αj‖ for all i, j. For instance, x2

0x1−x0x1x2 is homogenous, whereas
x2

0x1 − x0x1x
2
2 is not.

When a ring S is graded, there is a special class of ideals which have some
added structure that is compatible with the grading. We say an ideal a ⊆ S
is homogeneous if a can be generated by homogenous elements of S. Note
that it may also be possible that a can be generated by elements which are
not homogeneous, but this is irrelevant. Equivalently, a is homogeneous if
and only if

a =
⊕
d≥0

(a ∩ Sd)

as abelian groups.

Exercise 2.1. Prove this last claim.

3. Projective space

Let k be a field. We define projective n-space over k, denoted Pnk (or just
Pn if there will be no confusion) to be the quotient space

(kn+1 \ {0})/ ∼ where ν ∼ λν for all λ ∈ k×.
Recall that polynomials in k[x1, ..., xn] define functions An

k → k. Unfor-
tunately, polynomials in S = k[x0, ..., xn] do not define functions Pnk → k.
As an example of this, let f(x0, ..., xn) = x0. Since (1 : 0 : · · · : 0) = (2 :
0 : · · · : 0), we’d like to say that f(1 : 0 : · · · : 0) = f(2 : 0 : · · · : 0), but
this clearly is not the case. Luckily, we’re only interested in the zero sets
of polynomials, and as it happens, this is a well-defined notion for certain
types of polynomials.

A polynomial f(x) ∈ S is said to be homogeneous of degree d if f ∈ Sd.
In this case, note that

f(λx) = λdf(x),
a fact we can see by checking that this property holds for monomials in
Sd. In particular, if f(x) = 0, then f(λx) = λdf(x) = 0, so that the
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following definition is well-defined: if T ⊆ S is a collection of homogeneous
polynomials, we let

Z(T ) = {p ∈ Pn : f(p) = 0 for all f ∈ T}.
If a is a homogeneous ideal in S, we define Z(a) = Z(T ), where T is the set
of homogeneous elements of a (note that, in general, T ( a.)

A subset Y ⊆ Pn is said to be an algebraic set if there exists a collection
T ⊆ S of homogeneous polynomials such that Y = Z(T ).

Exercise 3.1. Show that
(a) The empty set and Pn are both algebraic sets.
(b) The union of two algebraic sets is an algebraic set.
(c) The intersection of any family of algebraic sets is again an algebraic set.

Once more, we define the Zariski topology on Pn by taking the open sets to
be the compliments of algebraic sets. With this topology, a projective alge-
braic variety, or more simply a projective variety, is an irreducible algebraic
subset of Pn with the subspace topology.

If Y ⊆ Pn is any subset, we define the homogeneous ideal of Y , denoted
I(Y ), to be the ideal generated by

{f ∈ S : f is homogeneous and f(p) = 0 for all p ∈ Y }.

4. Compatibility with affine varieties

If S is a graded ring, we’ve got two spaces associated to it: both Pn,
built with the use of the graded structure of S, and An+1, built without
any knowledge of this structure. Naturally, we’d like to know what sorts
of relationships there are between Pn and An+1. In practice, it is actually
easier to compare Pn with An, which is what we’ll now set out to do.

For i = 0, ..., n, let Ui ⊆ Pn be the set of points

Ui = {(a0 : ... : an) ∈ Pn : ai 6= 0}.
Define a map ϕi : Ui → An by

Ui(a0 : ... : an) =
(
a0

ai
, ...,

an
ai

)
,

where the term ai
ai

is omitted.

Exercise 4.1. Show that
(a) The set {Ui}ni=0 covers Pn, and
(b) Giving Ui the subspace topology, ϕi : Ui → An is a homeomorphism.


