
LECTURE 2 - THE NULLSTELLENSATZ

PATRICK DYLAN ZWICK

In our last lecture we learned, or reviewed, a number of facts about
rings and introduced some basic concepts for dealing with rings. We
introduced this idea of associating with any set of zeros in An the ideal
of polynomials that vanish at these points. We also learned how, for
any ideal I ⊆ K[X1, . . . , Xn], we can associate with it a set of points in
An, namely the set of points upon which every element F ∈ I vanishes.

Our first big theorem here is Hilbert’s Nullstellensatz1 which gives
us our fundamental relation between the zeros of an ideal I, and the
ideal I itself.

1. The STRONG Nullstellensatz

We’ll first prove the strong Nullstellensatz, and just state the weak
Nullstellensatz. Then, after the incredibly tricky and brilliant proof of
the strong Nullstellensatz from the weak, we’ll prove, in a less tricky
way, the weak Nullstellensatz.

Theorem (The Weak Nullstellensatz) Let K be an algebraically
closed field and let I ⊂ K[X1, . . . , Xn] be an ideal satisfying V(I) = ∅.
Then I = K[X1, . . . , Xn].

As I said, we’ll delay the proof of this for a little while, but we should
pause here to note that it’s true if and only if K is algebraically closed.
If K were not algebraically closed, then we’d have a non-constant poly-
nomial F ∈ K[X] such that F has no roots in K, and therefore for
its corresponding polynomial in K[X1, . . . , Xn] we’d have V(F ) = ∅,
while 1 /∈ (F ). For example, in R[X] we have V (X2 + 1) = ∅, while
1 /∈ (X2 + 1).

Exercises

1: (Harder) Prove that if K is a field which is not algebraically
closed, then each algebraic set in Kn is the zero set of a single

1This is Hilbert’s zeros theorem. In typical German fashion, it’s formed from
three simpler words: Null (=Zero), Stellen (=Places), Satz (=Theorem). So, it’s
Hilbert’s “zero places theorem”, but isn’t Nullstellensatz so much more fun to say?
Also, according to Miles Reid, you should stick to the German if you don’t want to
be considered an ignorant peasant.
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polynomial F ∈ K[X1, . . . , Xn]. Hint - Think about how to do
this in the case of R, and then generalize the idea.

From now on we’ll assume the field over which we’re working, k, is
algebraically closed unless we say otherwise. The strong Nullstellensatz
is equivalent to the weak Nullstellensatz, although at first blush this is
not obvious. We’ll prove that the weak implies the strong, and leave it
as an exercise to prove the strong implies the weak2.

Theorem (The Strong Nullstellensatz)3 Let K be an algebraically
closed field. If I is an ideal in K[X1, . . . , Xn], then4

I(V(I)) =
√

I

Proof - If I =< F1, . . . , Fn >5 then given a nonzero polynomial
F ∈ K[X1, . . . , Xn] which vanishes at every common zero of the poly-
nomials F1, . . . , Fn, we must show that there exists an integer m ≥ 1
and polynomials A1, . . . , An such that:

F m =
n∑

i=1

AiFi.

The proof of this is one of my favorite proofs ever. We introduce a
new variable, call it Y , and we consider the ideal:

Ĩ =< F1, . . . , Fn, 1 − Y F >⊂ K[X1, . . . , Xn]

where F, F1, . . . , Fn are as above. Now, we note that if F1 = F2 =
· · · = Fn = 0 (thinking of them as functions of n + 1 variables, where
the variable Y does not show up) then by assumption F = 0, and so
therefore 1 − Y F 6= 0. Now, we drag out the weak Nullstellensatz to
conclude:

V(Ĩ) = ∅ ⇒ 1 ∈< F1, . . . , Fn, 1 − Y F >.

2Proving the strong implies the weak is much easier. Perhaps that’s why it’s
called strong. Or maybe it’s because you need the weak to prove the strong. The
strong rely upon the weak to do their hard work for them. Kind of a Hobbesian
thing, maybe.

3This is, more or less, the proof from “Ideals, Varieties, and Algorithms” by Cox,
Little, and O’Shea.

4I included this as an exercise in last week’s homework. My bad. I’ve corrected
this in the notes that are now online. If you were able to prove it yourself without
looking ahead, you’re a genius!

5We know this can be done using a finite set of polynomials because of the Hilbert
Basis Theorem.
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Now, this means that

1 =
n∑

i=1

Pi(X1, . . . , Xn, Y )Fi + Q(X1, . . . , Xn, Y )(1 − Y F ).

If we set Y = 1/F (X1, . . . , Xn)
6, then our relation implies:

1 =

n∑

i=1

Pi(X1, . . . , Xn, 1/F )Fi,

and therefore for some m ∈ Z+ we have:

fm =

n∑

i=1

Aifi.

Was that not the trickiest proof ever?!7

To finish up our proof we note that it’s certainly true that
√

I ⊂
I(V(I)), because F ∈

√
I implies F m ∈ I, and if F m vanishes on V(I),

then so does F .
Conversely, using our result we have that if F ∈ I(V(I)), then by

definition F vanishes on V(I), and therefore according to our result

F m ∈ I, which means F ∈
√

I.
So,

√
I = I(V(I)).

Exercise

2: Prove that the strong Nullstellensatz implies the weak. That is
to say, if

√
I = I(V(I)) then V(I) = ∅ implies I = K[X1, . . . , Xn].

2. The weak Nullstellensatz

Now we must prove the weak Nullstellensatz.8 Just for clarity, here
it is again in a slightly different form:

6OK. Technically, we look at the natural ring homomorphism taking
K[X1, . . . , Xn, Y ] to K(X1, . . . , Xn) by sending Y 7→ 1/F (X1, . . . , Xn).

7This is actually called the “trick of Rabinowitsch”.
8This will be essentially the proof from Fulton’s “Algebraic Curves”. This is a

very good introductory algebraic geometry book, from a “do it yourself” perspective
(most of the book is problems, and you work out most of the results yourself), and
you can download it for free from Fulton’s website.
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Weak Nullstellensatz. If I is a proper ideal in K[X1, . . . , Xn],
then V (I) 6= ∅.

We note first that we may assume that I is a maximal ideal, for
there is a maximal ideal J containing I, and V(J) ⊂ V(I). So L =
K[X1, . . . , Xn]/I is a field, and K may be regarded as a subfield of L.

Now, suppose we knew that K = L. Then for each i there is an
ai ∈ K such that the I-residue of Xi is ai, or Xi − ai ∈ I. But
(X1−a1, . . . , Xn−an) is a maximal ideal, so I = (X1−a1, . . . , Xn−an),
and V(I) = {(a1, . . . , an)} 6= ∅.9

So, we’ve reduced the Nullstellensatz to the following conjecture:

Conjecture: If an algebraically closed field K is a subfield of a field
L, and there is a ring homomorphism from K[X1, . . . , Xn] onto L (that
is the identity on K), then K = L.

This conjecture will follow directly as a special case of Zariski’s
lemma, which it will take us some work to prove.

To do this we’ll first define the algebraic object conspicuously missing
from our first lecture. Namely, the module.

2.1. Modules. Let R be a ring. An R-module is a commutative group
M together with a scalar multiplicaiton (a mapping from R × M to
M) satisfying:

(1) (a + b)m = am + bm, for all a, b ∈ R, m ∈ M .
(2) a(m + n) = am + an, for all a ∈ R, m, n ∈ M .
(3) (ab)m = a(bm) for all a, b ∈ R, m ∈ M .
(4) 1m = m for m ∈ M, 1 ∈ R.

A subgroup N of an R-module is called a submodule if an ∈ N for
all a ∈ R, n ∈ N . So, a submodule N ⊆ M is itself an R-module.

If S is a set of elements in an R-module M , then the submodule
generated by S is defined to be {∑ risi|ri ∈ R, si ∈ S|}. We denote
this module

∑
Rsi.

Exercise

3: Verify that the submodule generated by S using the above
definition is the smallest submodule of M containing S.

9I asked you to prove that points in An and maximal ideals in K[X1, . . . , Xn]
correspond in the last lecture. Again, my bad.
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A module M is said to be finitely generated if M =
∑

Rsi for some
s1, . . . , sn ∈ M .

2.2. Finiteness Conditions. Now, if R is a subring of a ring S, then
there are several types of finiteness conditions for S over R, depending
on whether we consider S as an R-module, a ring, or (possibly) a field.

• S is said to be module-finite over R, if S is finitely generated as
an R-module. If R and S are fields, and S is module finite over
R, we denote the dimension of S over R by [S : R]. You’ll get
very use to this notation, and this idea, in your second-semester
algebra prelim class.

• Let v1, . . . , vn ∈ S. Let φ : R[X1, . . . , Xn] → S be the ring
homomorphism taking Xi to vi. The image of φ is written
R[v1, . . . , vn]. It is a subring of S containing R and v1, . . . , vn,
and it’s the smallest such ring. Explicitly, R[v1, . . . , vn] =
{∑ a(i)v

i1
1 · · · vin

n |a(i) ∈ R}. The ring S is ring-finite over R
if S = R[v1, . . . , vn] for some v1, . . . , vn ∈ S. In other words,
S can be viewed as a polynomial over R in a finite number of
“variables”.

• Suppose R = K, S = L are fields. If v1, . . . , vn ∈ L, let
K(v1, . . . , vn) be the quotient field of K[v1, . . . , vn]. We regard
K(v1, . . . , vn) as a subfield of L; it is the smallest subfield of L
containing K and v1, . . . , vn. The field L is said to be a finitely

generated field extension of K if L = K(v1, . . . , vn) for some
v1, . . . , vn ∈ L.

Examples

(1) The field extension Q(
√

2) over Q is module-finite, and [Q(
√

2) :
Q] = 2.

(2) The ring Q[π] is ring-finite over Q, but not module-finite. This
is equivalent to saying π is transcendental, which is pretty hard
to prove.

(3) The field extension Q(X) is a finitely-generated field extension
of Q, but is not ring-finite over Q. You’ll prove this as an
exercise.

Exercises

4: Show that if S is module-finite over R, then S is ring-finite
over R.
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5: Show that S = R[X] (the ring of polynomials in one variable)
is ring-finite over R, but not module-finite.

6: If L is ring-finite over K (K, L fields) then L is a finitely gen-
erated field extension of K.

7: Show that L = K(X) (the field of rational functions in one
variable) is a finitely generated field extension of K, but L is
not ring-finite over K.10

8: Let R be a subring of S, S a subring of T .

(a) If S =
∑

Rvi, T =
∑

Swj, show that T =
∑

Rviwj.
(b) If S = R[v1, . . . , vn], T = S[w1, . . . , wm], show that T =

R[v1, . . . , vn, w1, . . . , wm].
(c) If R, S, T are fields, and S = R(v1, . . . , vn), and T =

S(w1, . . . , wm), show that T = R(v1, . . . , vn, w1, . . . , wm).

So each of the three finiteness conditions is a transitive rela-
tion.

9: (Extremely Hard) Prove or disprove that Q[e, π] is not module-
finite over Q[π].11

2.3. Integral Elements. Let R be a subring of a ring S. An element
v ∈ S is said to be integral over R if there is a monic polynomial
F = Xn + a1X

n−1 + · · · + an ∈ R[x] such that F (v) = 0. If R and S
are fields, we usually say that v is algebraic over R if v is integral over
R.

Proposition - Let R be a subring of a domain S, v ∈ S. Then the
following are equivalent:

(1) v is integral over R.

(2) R[v] is module-finite over R.

(3) There is a subring R′ of S containing R[v] that is module-finite
over R.

Proof -

10
Hint : If L were ring-finite over K, a common denominator of ring generators

would be an element b ∈ K[X ] such that for all z ∈ L, bnz ∈ K[X ] for some n; but
let z = 1/c, where c doesn’t divide b. To prove such a c always exists, modify a
very, very, very old proof.

11If you prove this, please let me know!
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(1) implies (2): : If vn + a1v
n−1 + · · · + an = 0, then vn ∈∑n−1

i=0 Rvi. It follows that vm ∈ ∑n−1
i=0 Rvi for all m, so R[v] =∑n−1

i=0 Rvi.

(2) implies (3): : This is obvious. We just let R′ = R[v].

(3) implies (1): : This is the interesting part of the proof, and
involves something called the “determinant trick”, which you’ll
see come up repeatedly in commutative algebra, so it’s nice to
learn it now. If R′ =

∑n

i=1 Rwi, then vwi =
∑n

j=1 aijwj for

some aij ∈ R. Then
∑n

j=1(δijv − aij)wj = 0 for all i, where

δij = 0 if i 6= j and δii = 1.12 If we consider these equations in
the quotient field of S,13 we see that (w1, . . . , wn) is a nontrivial
solution, so det(δijv − aij) = 0. Since v appears only in the
diagonal of the matrix, this determinant has the form vn +
a1v

n−1 + · · ·+ an, ai ∈ R. So, v is integral over R.

Corollary. The set of elements of S that are integral over R is a
subring of S containing R.

Proof. If a, b are integral over R, then b is integral over R[a] ⊇ R,
so R[a, b] is module-finite over R.14 And a± b, ab ∈ R[a, b], so they are
integral over R by the proposition.

We say that S is integral over R if every element of S is integral
over R15. If R and S are fields, we say S is an algebraic extension of
R if S is integral over R. The proposition and corollary extend to the
case where S is not a domain, with essentially the same proofs, but we
won’t need that generality.

Problems

10: Let L be a field, K an algebraically closed subfield of L
(a) Show that any element of L that is algebraic over K is

itself already in K.
(b) An algebraically closed field has no module-finite field ex-

tensions except itself.

12This is called the “Kronecker delta function”. Its continuous analogue is called
the “Dirac delta function”, and it’s used in physics to describe cool point things
like electrons.

13This is where we need for S to be a domain.
14Problem 9(a).
15Pay attention, this will be coming up again in algebraic geometry.
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11: Let K be a field, L = K(X) the field of rational functions in
one variable over K.
(a) Show that any element of L that is integral over K[X] is

already in K[X].16

(b) Show that there is no nonzero element F ∈ K[X] such
that for every z ∈ L, F nz is integral over K[X] for some
n > 0.17

2.4. Field Extensions. Suppose K is a subfield of a field L, and
suppose L = K(v) for some v ∈ L. Let φ : K[X] → L be the homo-
morphism taking X to v. Let ker(φ) = (F ), F ∈ K[X] (since K[X] is
a PID). Then K[X]/(F ) is isomorphic to K[v], so (F ) is prime. Two
cases may occur:

Case 1: F = 0. Then K[v] is isomorphic to K[X], so K(v) = L
is isomorphic to K(X). In this case L is not ring-finite (or
module-finite) over K.18

Case 2: F 6= 0. We may assume F is monic. Then (F ) is prime,
so F is irreducible and (F ) is maximal19; therefore K[v] is a
field, so K[v] = K(v). And F (v) = 0, so v is algebraic over K
and L = K[v] is module-finite over K.

Now, to prove the weak Nullstellensatz we must prove that if a field
L is a ring-finite extension of an algebraically closed field K, then
L = K.20 In view of problem 10 it is enough to show that L is module-
finite over K. The following lemma generalizes our discussion above:

Zariski’s Lemma - If a field L is ring-finite over a subfield K, then
L is module-finite (and hence algebraic) over K.

Proof - Suppose L = K[v1, . . . , vn]. The case n = 1 was taken
care of by our above discussion, so we assume the result for all exten-
sions generated by n − 1 elements. Let K1 = K(v1). By induction,
L = K1[v2, . . . , vn] is module-finite over K1. We may assume v1 is not
algebraic over K21.

16
Hint : If zn + a1z

n−1 + · · · + an = 0, write z = F/G, F, G relatively prime.
Then Fn + a1F

n−1G + · · · + Gn = 0, so G divides F . You might also want to use
an idea like this in one of your earlier problems, if you’re stuck.

17
Hint : See problem 8.

18See problem 9.
19Every nonzero prime ideal in a PID is maximal.
20This is a restatement of our conjecture.
21If it were, problem 9(a) would finish the proof.
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Each vi satisfies an equation vni

i + ai1v
ni−1
i + · · ·+ ain = 0, aij ∈ K1.

If we take a ∈ K[v1] that is a multiple of all the denominators of
the aij , we get equations (avi)

ni + aai1(av1)
ni−1 + · · · + anain = 0. It

follows from our earlier corollary that for any z ∈ L = K[v1, . . . , vn],
there is an N such that anz is integral over K[v1]. In particular, this
must hold for z ∈ K(v1). But since K(v1) is isomorphic to the field
of rational functions in one variable over K, this is impossible22. This
proves Zariski’s lemma, and as a consequence the weak Nullstellensatz.

Exercise

12: Let K be a field, F ∈ K[X] an irreducible monic polynomial
of degree n > 0.
(a) Show that L = K[X]/(F ) is a field, and if x is the residue

of X in L, then F (x) = 0.
(b) Suppose L′ is a field extension of K, y ∈ L′ such that

F (y) = 0. Show that the homomorphism from K[X] to L′

that takes X to y induces an isomorphism of L with K(y).
(c) With L′, y as in (b), suppose G ∈ K[X] and G(y) = 0.

Show that F divides G.
(d) Show that F = (X − x)F1, F1 ∈ L[X].

13: Let K be a field, F ∈ K[X]. Show that there is a field L
containing K such that F =

∏n

i=1(X − xi) ∈ L[X].23 L is
called a splitting field of F .24

22According to problem 11(b).
23

Hint : use problem 12(d) and induction on the degree.
24I am the David Foster Wallace of lecture notes.


