
REBEL ALGEBRAIC GEOMETRY SEMINAR :

LECTURE 1 - THE BASICS

PATRICK DYLAN ZWICK

1. Rings

Algebraic geometry all begins with rings. No, not jewelry, but math-
ematical rings. In algebra, a ring R is defined as being a set of elements
with two binary operations (+, ·) satisfying:

• R is closed under the two operations : So, if a, b ∈ R we have
a + b ∈ R and a · b ∈ R. We will frequently write a · b = ab.

• Associativity under addition : a + (b + c) = (a + b) + c.

• Commutativity under addition : a + b = b + a.

• Additive identity : There exists an element denoted 0 ∈ R such
that a + 0 = a = 0 + a for all a ∈ R.

• Additive inverses : For every a ∈ R there exists a unique ele-
ment, denoted −a ∈ R such that a + (−a) = 0.

• Associativity under multiplication : a(bc) = (ab)c.

• Distributivity : a(b + c) = ab + ac and (a + b)c = ac + bc.

Some examples of rings are Z, Q, R, C and their associated polyno-
mial rings Z[x], Q[x], . . ..

In pretty much all the rings we deal with we’ll have a multiplicative
identity, which we’ll denote by 1, and our multiplication will be com-
mutative. Also note that all rings are abelian groups under addition.

• Multiplicative identity : There exists an element denoted 1 ∈ R
such that 1a = a = a1 for all a ∈ R.

• Commutativity under multiplication : For all a, b ∈ R we have
ab = ba.

So, from here on out, we’ll assume that all of our rings are commu-
tative with a 1.
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Exercises

1: Give an example of a ring that does not contain a 1. Give an
example of a ring that is not commutative.

2: Prove that in any ring 0a = 0 for all a ∈ R.

Now, in a general ring if ab = 0 it does not have to be the case that
either a = 0 or b = 0. Rings in which this is the case are called integral

domains or frequently just domains.

2. Ideals

A subset of a ring I ⊂ R is called an ideal if:

(1) I is closed under addition.

(2) For all r ∈ R if a ∈ I then ra ∈ I.

Exercises

3: Prove that ∩λ∈ΛIλ is an ideal. That it to say, an arbitrary
intersection of ideals is an ideal.

4: Prove that for any element a ∈ R the set of elements that can
be written as ra for r ∈ R is an ideal.

For any subset S ⊂ R we can find the smallest ideal containing S,
called I(S). This will be the intersection of all the ideals containing S.
It will also be the set of elements that can be written as r1s1+· · ·+rmsm

for ri ∈ R and si ∈ S. We call I(S) the ideal generated by S.

Exercise

5: Prove the equivalence of the two definitions of I(S) given above.

Now, obviously if 1 ∈ S then I(S) = R. Also, if we have an element
u ∈ S such that there exists a v ∈ R where uv = 1 then I(S) = R. An
element u satisfying this condition is called a unit. If an ideal contains
a unit, then it is the entire ring.

Note that a commutative ring in which every non-zero element is a
unit is called a field.
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3. Ring Homomorphisms

A ring homomorphism is a map φ : A → B where A and B are rings
and φ satisfies:

• φ(ab) = φ(a)φ(b)

• φ(a + b) = φ(a) + φ(b).

The set of elements a ∈ A such that φ(a) = 0 is called the kernel of
φ.

Exercise

6: Show that ker(φ) is an ideal of A.

Now, for any ideal I ⊆ R we can form a new ring called the quotient
ring R/I. The elements of this ring are sets of the form a + I, called
cosets, where this denotes all elements in R that can be written as a+i,
where i ∈ I. Here we define addition as (a + I) + (b + I) = (a + b) + I
and multiplication as (a + I)(b + I) = ab + I.

Exercise

7: Explain why this definition of multiplication and division is
well defined and makes sense.

Also, for any ideal I ⊆ R this is a natural ring homomorphism
φ : R → R/I with kernel I. So, not only is the kernel of a ring
homomorphism an ideal, but every ideal is the kernel of some ring
homomorphism.

4. Special Rings and Ideals

There are special types of rings and special types of ideals that take
up most of our attention in algebraic geometry. So, let’s talk about
them.

• Principal Ideal Domains - A principal ideal domain (usually
abbreviated PID) is an integral domain in which every ideal is
generated by only one element. So, all ideals are of the form
I = (a). An example of a principal ideal domain is the ring of
integers Z.

Exercise

8: Give another example of a PID.

• Noetherian Rings - A noetherian ring is kind of the next step
up from a PID1. A noetherian ring is a ring in which every ideal

1It’s a big step.
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is finitely generated. That is to say, for any ideal I ⊆ R we can
find a finite set S such that I = I(S).

Exercises

9: (Easy) Give an example of a noetherian ring.

10: (Harder) We say that a ring satisfies the ascending chain
condition (ACC) if for every chain of ideals:

I1 ⊂ I2 ⊂ I3 ⊂ · · ·
eventually the chain stabalizes. That is to say for some
N ∈ Z+ we have In = In+1 when n ≥ N . Prove that a ring
satisfies the ACC if and only if it is noetherian.2

• Prime Ideals - These are very important in algebraic geometry.
A prime ideals is an ideal, typically denoted p, such that if ab ∈
p then either a ∈ p or b ∈ p. Equivalently, if a, b /∈ p then ab /∈ p.
In other words, the set of elements not in p for a multiplicative

system (a set of elements closed under multiplication). These
will be important later.

Exercises

11: Prove that for any prime ideal p ⊂ R that R/p is an
integral domain.

12: Prove that for any ideal I ⊂ R if R/I is an integral
domain then I is prime. So, we can equivalently define a
prime ideal as any ideal I where R/I is an integral domain.

• Maximal Ideals - The big ones! A maximal ideal is a proper
ideal that is as big as they come. More precisely, a maximal
ideal is an ideal, frequently denoted m, such that if I ⊆ R is an
ideal and m ⊆ I then either m = I or I = R. In other words,
a maximal ideal is an ideal that is not contained in any other
proper ideal. Pleae note that we require a maximal ideal to be
a proper subset of the ring R, so R itself is not a maximal ideal.

Exercises

13: Prove that a maximal ideal is a prime ideal.

14: Prove that if m is a maximal ideal then R/m is a field, and
vice-versa. Thus, we again have an equivalent definition.
Why does knowing this prove that a maximal ideal is a
prime ideal?

2This problem was on the January, 2008 algebra prelim.
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15: (Hard) Prove that maximal ideals always exist. That is
to say, for a ring R 6= 0 (so, any ring not equal to the zero
ring) there will exist maximal ideals. Hint : Zorn’s lemma.

• Radical Ideals - Useful in mathematics, but can be dangerous
in politics.3 A radical ideal is an ideal J where if an ∈ J then
a ∈ J . For any ideal I we can define the set

√
I of all elements

a ∈ R such that an ∈ I for some n ∈ Z+.

Exercises

16: Prove that
√

I is an ideal.

17: Prove that
√√

I =
√

I.

18: Prove that
√

p = p if p is a prime ideal. In other words,
all prime ideals are radical.

19: (Harder) Prove that
√

I is the intersection of all prime
ideals that contain I.

20: What characterizes the elements in the ideal
√

0? This
ideal is called the nilradical.

• Local Rings - A local ring is a ring with a unique maximal ideal.4

As a very easy example, all fields are local rings, as they only
have one ideal, namely the zero ideal. Later on we will learn
about a process called localization5, where using just a ring and
a prime ideal you can build a local ring.

Exercise

21: Give an example of a local ring that is not a field.

5. Polynomial Rings and Varieties

So why do we call it algebraic geometry and not, say, ring theory?
Well, I sometimes wonder this myself, but it all starts with polynomial
rings. A polynomial ring over a field R is the ring of polynomials
with coefficients in R, usually denoted R[X1, . . . , Xn] if there are a
finite number of variables. We’ll frequently be assuming that R is an

3Just ask Grothendieck. On second thought, don’t. I hear he’s gotten pretty

weird.
4I call this unique maximal ideal the Lord of the Ring! Sorry.
5This is where that multiplicative set stuff comes in.
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algebraically closed field6, and in this case we’ll use k for our ring and
write K[X1, . . . , Xn].

Now, if we have a set of polynomials F1, . . . , Fn ∈ K[X1, . . . , Xn] we
can ask the question: “at what points in Kn do all these polynomials
simultaneously vanish?” This is the zero-set of our collection of poly-
nomials, and it is known as a variety (or, to be more specific, an affine
variety). Algebraic geometry begins as the study of these varieties.

Exercise

22: Prove that if the polynomials F1, . . . , Fn vanish on the set S,
then all the polynomials in the ideal < F1, . . . , Fn > generated
by the Fi also vanish on S.

We can also go the other way, and take a set S ⊆ Kn and ask:
“which polynomials vanish on all the points of S?”.

Exercise

23: Prove that the set of polynomials vanishing on S forms an
ideal.

So, for any ideal I ⊆ K[X1, . . . , Xn] we have a corresponding set of
points, which we’ll denote V(I), upon which all the polynomials in I
vanish. Similarly, for any set of points S, we have an ideal, which we’ll
denote I(S), of all the polynomials that vanish on S. Thus we have this
relationship between algebraic objects, namely the ideals, and geometric

objects (surfaces, planes, curves, lines, points, etc...), namely the zero
sets of polynomials. So, we can use algebra to study geometry, and
geometry to study algebra, and in fact morph the two of them together
Voltron-style to form: ALGEBRAIC GEOMETRY!

Exercise

24: Prove that for any set S ⊆ kn the ideal I(S) is radical.

We note in general that I ⊆ I(V(I)) and S ⊆ V(I(S)).

Exercise

25: Prove that our correspondence is inclusion reversing. That is
to say, if I ⊆ J then V(I) ⊇ V(J).

6An algebraically closed field is a field in which every polynomial with coefficients

in that field has a root in that field. The classic example is C, the field of complex

numbers. In fact, you’ll prove C is algebraically closed in all three of your prelims

classes during spring semester, in three very different ways.
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6. The Zariski Topology

From now on we’ll fix an algebraically closed field K and refer to the
space of possible values in Kn as An. This is called affine space. For
the ring K[X1, . . . , Xn] we note that:

• V(1) = ∅
• V(0) = An

• V(I1) ∪ V(I2) = V(I1 ∩ I2)

•
⋂

λ∈Λ

V(Iλ) = V

(

∑

λ∈Λ

Iλ

)

.

In the final relation the term
∑

Iλ refers to the ideal given by all
finite sums of elements from the Iλ. It is the smallest ideal containing
each Iλ.

Exercise

26: Prove the above assertions.

Some of you may notice these relations look familiar. In fact, we can
use them to define a topology on An called the Zariski topology. In the
Zariski topology the closed sets are varieties, and the open sets are the
complements of the closed sets. It’s a very interesting and, if you’re
use to Euclidean topology, weird topology.

Exercises

27: Prove that the Zariski topology on C[z] is not Hausdorff!

28: (Harder) Under what circumstances is the Zariski topology
Hausdorff?

Now, a variety is called irreducible if whenever V = V1 ∪ V2, with
V1, V2 also varieties, we have either V = V1 or V = V2.

Exercise

29: Prove that a variety is irreducible if and only if I(V ) is prime.

Note - Some authors, notably Robin Hartshorne, only call a variety
a variety if it’s irreducible, and use the term “algebraic set” to refer to
a more general variety.
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So, we’ve expanded our algebra-geometry dictionary (correspondence)
and now we know:

Radical ideals ⇔ Varieties

Prime ideals ⇔ Irreducible varieties

Maximal ideals ⇔ Points

Wait, we don’t know that last one yet, do we? Well...

Exercise

30: Prove that a point P ∈ An corresponds with a maximal ideal
mP in K[X1, . . . , Xn]. The other way, namely that maximal
ideals correspond with points, will have to wait until the next
lecture.

6.1. The Hilbert Basis Theorem. There’s an issue we’ve been skirt-
ing here. How do we know that given an ideal I ⊂ K[X1, . . . , Xn] that
it’s generated by a finite set of ideals < F1, . . . , Fm >? Now, if this were
not the case things might be very bad, in that calculating the zero set
of an infinite number of polynomials might very well make your head
explode. But, things are not that bad, and your head is safe, thanks
to the Hilbert Basis Theorem.

Hilbert is really the first big name is algebraic geometry, as he was
in so many other areas of mathematics. The two “founding proofs” of
algebraic geometry, the basis theorem and the Nullstellensatz (great
name) belong to him. We’ll end this lecture with the basis theorem,
and begin our lecture next week with the Nullstellensatz.

Hilbert Basis Theorem - If R is a noetherian ring, then R[X] is
also a noetherian ring.

OK, it’s time for our first real proof here. So, get ready for it. It
turns out to be not that bad. Just some induction and some cleverness.

Proof7 - Recall that for a polynomial:

F (X) = a0X
r + a1X

r−1 + · · ·+ ar, ai ∈ R, a0 6= 0.

r is called the degree of F , and a0 is its leading coefficient.

7More or less lifted straight from Milne’s lecture notes.
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Let I be an ideal in R[X], and let Ii be the set of elements of R
that occur as the leading coefficient of a polynomial in I of degree ≤ i.
Then Ii is an ideal in R, and

I1 ⊂ I2 ⊂ · · ·

Because R is noetherian, this sequence eventually stabalizes, say Id =
Id+1 = . . . (and Id consists of the leading coefficients of all polynomials
in I).

For each i ≤ d, choose a finite set Fi1, Fi2, . . . of polynomials in I of
degree i such that the leading coefficients aij of the Fijs

′ generate Ii.
Let F ∈ I; we shall prove by induction on the degree of F that it lies

in the ideal generated by the fij . When F has degree 1, this is clear.
Suppose that F has degree s ≥ d. Then F = aXs + · · · with a ∈ Id,

and so

a =
∑

j

bjadj , for some bj ∈ R,

Now

F −
∑

j

bjFdjx
s−d

has degree < deg(F ), and so lies in (Fij) by our induction hypothesis.
Suppose that F has degree s ≤ d. Then a similar argument shows

that

F −
∑

bjFsj

has degree < deg(F ) for suitable bj ∈ R, and so lies in (Fij) again
by our induction hypothesis. QED

Phew! If that didn’t make sense, and it would be no shame at all if
you didn’t understand the proof the first time you saw it during lecture,
make sure you go over the proof in your notes until it does.

Exercise

31: Use the Hilbert basis theorem to prove K[X1, . . . , Xn] is noe-
therian.

Note that while the basis theorem proves that a finite set of poly-
nomials generates any ideal I, it tells you nothing about how to find
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these polynomials. This prompted Paul Gordan to say of it: “Das ist
nicht Mathematik. Das ist Theologie.”8

Also, suppose you’re given a polynomial F and you want to deter-
mine if it belongs to the ideal < G1, . . . , Gm >, how do you go about
doing so? It turns out to be an interesting problem that’s more or
less solved using something called Grobner bases. There will be a talk
about this at the undergraduate colloquium on Wednesday, September
23rd, 2009. I hear the speaker is fantastic, and good looking too. There
will also be pizza.

8In English: “This is not mathematics, this is theology.” Gordan had been

working on a constructive proof, one in which you could actually calculate the

generating set for a given ideal, for decades, so there may have been some sour

grapes here. Eventually, even Gordan found some religion and had to admit that

Hilbert’s approach had its merits. An interesting account of this is found in the quite

good introductory algebraic geometry book “Elementary Algebraic Geometry” by

Keith Kendig. A bit too big for this course, but if you want to continue working

on this during spring semester I’d definitely recommend checking it out.


