
HARTSHORNE’S ALGEBRAIC GEOMETRY - SECTION
2.1

Y.P. LEE’S CLASS

2.1.1: Let A be an abelian group, and define the constant presheaf

associated to A on the topological space X to be the presheaf
U 7→ A for all U 6= ∅, with restriction maps the identity. Show
that the constant sheaf A defined in the text is the sheaf associ-
ated to this presheaf.

Solution by Dylan Zwick

If we examine the constant sheaf A we note that for an open
set U ⊆ X and a continuous map φ : U → A, with A given the
discrete topology, there is an obvious and natural identification
between φ(s), with s ∈ U , and the corresponding element in Fs,
where Fs is the stalk of the constant presheaf associated to A on
X. Also, we note that for any s ∈ U there is an open set V ⊆ U
defined by φ−1(φ(s))1, and an element φ(s) ∈ A = F(V ), such
that for all q ∈ V we have that φ(s)q = φ(q), where we again use
the natural identification between φ(s) and the corresponding
element in Fs. So, the constant sheaf defined in the text is the
sheafification of the constant presheaf defined here.

2.1.2: (a) For any morphism of sheaves φ : F → G, show that
for each point P , (kerφ)p = ker(φp) and (imφ)p = im(φp).

Solution by Yuchen Zhang

“ker(ϕ)P ⊆ ker(ϕP )” Obvious.
“ker(ϕP ) ⊆ ker(ϕ)P ” If sP ∈ ker(ϕP ), we have sP ∈ FP

and ϕP (sP ) = 0 in GP . Therefore, there exists an open
set U ∋ P and a section s ∈ F (U) such that s|P = sP
and ϕ(s)|P = 0, which means there is an open set V ∋ P
and ϕ(s)|V = 0. Hence, ϕ(s|V ) = 0, s|V ∈ ker(ϕ)(V ),
sP = (s|V )|P ∈ ker(ϕ)P .
“im(ϕ)P ⊆ im(ϕP )” Obvious, since im(ϕ)P is the same

1We’ve used the discrete topology on A and the fact that φ is continuous
1
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stalk of the presheaf of image before sheafification.
“im(ϕP ) ⊆ im(ϕ)P ” If sP ∈ im(ϕP ), we have some tp ∈FP such that ϕP (tP ) = sP . Suppose t ∈ F (U) is a section
on some open neighborhood U of P such that t|P = tP .
Then, ϕ(t)|P = ϕP (tP ) = sP , so sP is in the stalk of the
image presheaf at P . Recalling that the stalk at a point re-
mains the same after sheafification, we have sP ∈ im(ϕ)P .

(b) Show that φ is injective (respectively, surjective) if and only
if the induced map on the stalks φp is injective (respectively,
surjective) for all P .

Solution

ϕ is injective ⇐⇒ ker(ϕ) = 0
⇐⇒ ker(ϕ)P = 0 ∀P ∈ X
⇐⇒ ker(ϕP ) = 0 ∀P ∈ X
⇐⇒ ϕP is injective ∀P ∈ X

ϕ is surjective ⇐⇒ im(ϕ) = G
⇐⇒ im(ϕ)P = GP ∀P ∈ X (for both sides are sheaves)
⇐⇒ im(ϕP ) = GP ∀P ∈ X
⇐⇒ ϕP is surjective ∀P ∈ X

(c) Show that a sequence . . .F i−1 φi−1

→ F i φi

→ F i+1 → . . . of
sheaves and morphisms is exact if and only if for each
P ∈ X the corresponding sequence of stalks is exact as
a sequence of abelian groups.

Solution

the sequence is exact ⇐⇒ ker(ϕi) = im(ϕi−1)
⇐⇒ ker(ϕi)P = im(ϕi−1)P ∀P ∈ X
⇐⇒ ker(ϕiP ) = im(ϕi−1

P ) ∀P ∈ X
⇐⇒ the stalk sequence is exact ∀P ∈ X

2.1.3: (a) Let ϕ : F → G be a morphism of sheaves on X. Show
that ϕ is surjective if and only if the following condition
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holds: for every open set U ⊂ X, and for every s ∈ G (U),
there is a covering {Ui} of U , and there are elements ti ∈F (Ui), such that ϕ(ti) = s|Ui

, for all i.

Solution by Christian Martinez

We know from exercise 1.2(b) that ϕ : F → G is surjective
if and only if ϕp : Fp → Gp is surjective for all p. Thus,
ϕ : F → G surjective implies that for each open subset
U ⊂ X and each p ∈ U there exist an open neighborhood
V ⊂ X of p and s̃ ∈ F (V ) such that

(s, U) = (ϕ(V )(s̃), V ) ∈ Gp.
Therefore, there exists W ⊂ U ∩ V such that p ∈W and

s|W = ϕ(V )(s̃)|W = ϕ(W )(s̃|W ).

Let us denote s̃|W by t ∈ F (W ). Since that this is true for
each p ∈ U we get an open cover {Ui} of U and sections
ti ∈ F (Ui) such that

s|Ui
= ϕ(Ui)(ti), for all i.

Conversely, given (s, U) ∈ Gp (p fixed), if there exist an
open cover {Ui} of U and sections ti ∈ F (Ui) such that

ϕ(ti) = s|Ui
for all i,

then in particular p ∈ Ui for some i and therefore (s, Ui) =

(s, U) ∈ Gp implying that ϕp(ti, Ui) = (s, U).

(b) Give an example of a surjective morphism of sheaves ϕ :F → G , and an open set U such that ϕ(U) : F (U) →G (U) is not surjective.

Solution

Consider on C \ {0} the sheaves O and O∗ given by
• O(U) is the additive group of holomorphic functions

on U .
• O∗(U) is the multiplicative group of nonzero holo-

morphic functions on U .
Consider the map

exp : O → O∗

given by sending f ∈ O(U) to e2πif ∈ O∗(U). Actually,
exp is a morphism of sheaves.
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Note that z ∈ O∗(C\{0}) is not the image of any function
in O(C\{0}) (log is not holomorphic in C\{0}). However,
since locally there is always a branch of log, the map

expx : Ox → O∗
x

is surjective for each x.

2.1.6: (a) Let F ′ be a subsheaf of a sheaf F . Show that the natu-
ral map of F to the quotient sheaf F/F ′ is surjective, and
has kernel F ′. Thus there is a short exact sequence:

0 → F ′ → F → F/F ′ → 0.

Solution by Dylan Zwick

The elements of the quotient sheaf will be maps, s, from
U to ∪pF

′′
p , where F ′′(U) = F(U)/F ′′(U), such that:

(a) s(p) ∈ F ′′
p for all p ∈ U ;

(b) For all p ∈ U , there exists a V ⊆ U with p ∈ V and
a t ∈ F ′′(V ) such that for all q ∈ V , s(q) = tq.

The natural map from F to F/F ′ will map any section
a ∈ F(U) to the map generated by the image of a in
F(U)/F ′(U).
Now, suppose we have an open set U ⊆ X and a map
s. Then for all p ∈ U we have a corresponding open set
Vp ⊆ U and element t(p) ∈ F(Vp)/F

′(Vp) that satisfy the
condition above. For each such t(p) pick an element t(p)′ ∈
F(V ) that maps to t(p) under the quotient. We note that
this element t(p)′ under the natural map to F/F ′ will just
map to the restriction s|Vp

, and so by problem 2.1.3a) we
have that the natural map is surjective.
The subsheaf F ′ is obviously contained in the kernel of the
natural map. If a section a ∈ F(U) gives rise to the zero
map in F(U)/F ′(U) this implies that for some open cover
of U the restrictions of a to the sets in this open cover are
all in F ′. This would imply that a ∈ F ′(U) because F ′ is
a sheaf. So, the kernel of the map is just the subsheaf F ′.

(b) Conversely, if 0 → F ′ → F → F ′′ → 0 is an exact se-
quence, show that F ′ is isomorphic to a subsheaf of F , and
that F ′′ is isomorphic to the quotient of F by this subsheaf.
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Solution

If we say that α is the map F ′ → F then call the presheaf
image of α G. As α is injective it induces a presheaf isomor-
phism φ : F ′ → G. The map φ−1 is an injective presheaf
morphism from G to the sheaf F , and so it will have a cor-
responding unique morphism of sheaves ψ : im(φ) → F ,
where φ−1 = ψ ◦ θ, and θ is of course the sheafification
map θ : G→ im(φ), noting that im(φ) is by definition the
sheafification of G. Now, according to problem 2.1.4a) this
morphism ψ is injective. As φ−1 is surjective we must have
that ψ is surjective as well. Therefore, φ is injective and
surjective, and so according to problem 2.1.5 it is an iso-
morphism. Now, according to problem 2.1.4b) im(φ) can
be identified with a subsheaf of F , and so we have that F ′

is isomorphic to a subsheaf of F .
Now, call the map F → F ′′ β, then say G is the presheaf
given by U 7→ F/ker(β). Then β induces an isomorphism
of presheaves φ : G → F ′′, and we’ve got the situation
we had before, except with φ and φ−1 reversed, which is
just notational and doesn’t matter. So, G+ and F ′′ are
isomorphic, and as G+ = F/ker(β) by definition, and as
ker(β) = im(α) = F ′ by the exactness of the sequence we
have that F ′′ = F/F ′.

2.1.7: Let F → G be a morphism of sheaves.

(a) Show that im(φ) = F/ker(φ).

Solution by Dylan Zwick

First we note that if F1 and G1 are isomorphic presheaves,
then they’re isomorphic on stalks, and as the stalk of a
presheaf is equal to the stalk of the presheaf’s sheafifica-
tion, we have that F+

1 and G+
1 are isomorphic on stalks.

For sheaves, isomorphic on stalks is equivalent to being
isomorphic, and therefore F+

1 is isomorphic to G+
1 . So, if

two presheaves are isomorphic, then their respective sheafi-
fications are isomorphic as well, as of course they must be.
For any open set U we obviously have that the image φ(U)
is isomorphic to F(U)/ker(φ(U)), as it’s a homomorphism
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of abelian groups, and so the presheaf image of φ is iso-
morphic to the quotient presheaf U → F(U)/ker(φ)(U).
As the presheafs are isomorphic, their respective sheafifi-
cations must also be isomorphic, and we have:

im(φ) ∼= F/ker(φ).

(b) Show that coker(φ) = G/im(φ).

Solution

To prove this we first note that if G1 ⊆ F1 are presheaves
then for any point p we have:

(F1/G1)
+
p = (F1/G1)p = ((F1)p/(G1)p) = ((F+

1 )p/(G
+
1 )p).

Therefore, as they’re isomorphic on stalks, we have (F1/G1)
+ =

(F+
1 /G

+
1 ). So, now we just note that by definition coker(U) =

G(U)/φ(U) and so the presheaf cokernel is φ is isomorphic
to the presheaf quotient of G by the presheaf image of φ.
Therefore, we have that their respective sheafifications are
isomorphic, and so:

coker(φ) ∼= G/im(φ).

2.1.8: For any open subset U ⊆ X, show that the functor Γ(U, ·)
from sheaves on X to abelian groups is a left exact functor, i.e.,
if

0 → F ′ φ
−→ F

ψ
−→ F ′′(1)

is an exact sequence of sheaves, then

0 → Γ(U,F ′)
φ(U)
−−→ Γ(U,F)

ψ(U)
−−−→ Γ(U,F ′′)(2)

is an exact sequence of groups.

Solution by Chris Kocs

Since φ is injective, the induced map φ(U) must be injec-
tive for every open subset U of X, so to show that (2) is an
exact sequence, we just need to show that ker(φ(U)) is equal
to im(ψ(U)). Let s ∈ Γ(U,F ′). By problem 1.2, the induced
sequence of stalks
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0 → F ′
P

φP−→ FP

ψP−→ F ′′
P(3)

is exact as a sequence of abelian groups for every P ∈ X
since (1) is exact. So ψP (φP (sP )) = 0 for every P ∈ U . Hence,
ψ(φ(s))P = 0 for every P ∈ U . (There is an open subset
V of U such that the pair <V, s|V> represents the element
sP in F ′

P , the pair <V, φ(s)|V> represents φ(s)P in FP , and
<V, ψ(φ(s))|V> represents ψ(φ(s))P in F ′′

P . We must have that
ψ(φ(ρ′UV (s))) = ψ(ρUV (φ(s))) = ρ′′UV (ψ(φ(s))) by the definition
of morphisms between sheaves, where ρ′, ρ, and ρ′′ are the re-
striction maps on F ′, F , and F ′′ respectively.) For every P ∈ U
then, there is a open neighborhood VP such that ψ(φ(s))|VP

= 0,
so by the uniqueness condition on sheaves, ψ(φ(s)) = 0. This
means that im(φ(U)) ⊆ ker(ψ(U)).

Now let t ∈ ker ψ. For all P ∈ U , there is an sP ∈ F ′
P such

that φP (sP ) = tP by the exactness of (3). Thus, there exists
an open covering {Vi} of U and elements si ∈ F ′ such that
φ(si) = t|Vi

. Since φ(si|Vi∩Vj
) = φ(sj|Vi∩Vj

) = t|Vi∩Vj
for all i

and j, si|Vi∩Vj
= sj|Vi∩Vj

by the injectivity of φ(Vi∩Vj). By the
existence condition on sheaves, there is an s ∈ F ′(U) such that
s|Vi

= si for all i. By the uniqueness condition, φ(s) = t, so
ker(ψ(U)) ⊆ im(φ(U)), concluding the proof.

2.1.9: Direct Sum. Let F and G be sheaves on X. Show that the
presheaf U 7→ F(U) ⊕ G(U) is a sheaf. It is called the direct
sum of F and G, and it is denoted by F ⊕G. Show that it plays
the role of direct sum and of direct product in the categorie of
sheaves of abelian groups.

Solution by Veronika Ertl

Proof: F ⊕ G is clearly a presheaf:
(a) For every open subset U ⊆ X, F ⊕G(U) = F(U)⊕G(U) is
again an abelian group.
(b) For every inclusion V ⊆ U of open subsets of X, we have
the restriction map induces by the restriction maps of F and
G: ρUV = (ρFUV , ρ

G
UV ).

(0) F ⊕ G(∅) = F(∅) ⊕ G(∅) = 0 ⊕ 0 = 0.
(1) ρUU = (ρFUU , ρ

G
UU) = (Id, Id) = Id.
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(2) If W ⊆ V ⊆ U are three open subsets, ρUW = (ρFUW , ρ
G
UW ) =

(ρFVW ◦ ρFUV , ρ
G
VW ◦ ρGUV ) = ρV W ◦ ρUV .

We will show that it is indeed a sheaf:
(3) Let U be an open set in X and {Vi}i∈I a covering of U .
Let s, t ∈ F ⊕ G(U) such that s|Vi

= t|Vi
for all i ∈ I. By

definition, s and t can be written in the form s = sF + sG and
t = tF + tG with sF , tF ∈ F(U) and sG, tG ∈ G(U). This means
sF |Vi

+ sG|Vi
= tF |Vi + tG|Vi

so sF |Vi
= tF |Vi

and sG|Vi
= tG|Vi

.
By hypothesis sF = tF on U and sG = tG on U . This shows
that actually s = t on U .
(4) Let si ∈ F ⊕ G(Vi) for each i, such that for each i, j,
si|Vi∩Vj

= sj |Vi∩VJ
. Following the same strategy as in (3), i.e.

regarding the F and the G components of all si, we find for each
component an element over U that satisfies (4) of Hartshorne.
Matching these together, we find s ∈ F ⊕ G(U) such that
s|Vi

= si for all i ∈ I.

We have seen, that the direct sum as defined is again in the
category of sheaves over X. In particular, it is compatible with
the morphisms as defined in the lecture. The Yoneda-Lemma
shows then, that the direct sum is uniquely defined in this cat-
egory (and so is the direct product).

2.1.11: Let {Fi} be a direct system of sheaves on a noether-
ian topological space X. In this case show that the presheaf
U 7→ lim

→
Fi(U) is already a sheaf. In particular, Γ(X, lim

→
Fi) =

lim
→

Γ(X,Fi).

Solution by Dylan Zwick

Take an open set U ⊆ X and an element s ∈ lim
→

Fi(U). This

element will have a representative ts ∈ Fs(U), where Fs is a
scheme in our direct system. Now, take an open cover of U by
sets Vi, and note that as X is noetherian it is compact, so we
may assume open cover is finite. Say there are N open sets in
this finite cover. For each of these open sets find a represen-
tative ts|Vi

∈ Fs|Vi
. This gives us a finite set of schemes in our

direct system S = {Fs(V ),Fs|V1

, . . . ,Fs|VN
}, and so we can find

a scheme F for which every scheme in S is a subscheme. Each of
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our representative elements ts, ts|V1

, . . . , ts|VN
will have a corre-

sponding representative in the appropriate abelian group inF .
Call these representatives t ∈ F(U), t|V1

∈ F(V1), . . . , t|VN
∈

F(VN). Now, we note that if s|Vi
= 0 for each Vi then the

corresponding representatives t|Vi
= 0. As F is a scheme, this

implies that t = 0, which means s = 0. So, the presheaf satisfies
the first requirement to be a sheaf.

As for the second requirement, suppose we have an open set
U ⊆ X and an open cover of U by sets Vi (which we may again
assume is a finite open cover) such that for each Vi we have
an element si ∈ lim

→
(Vi), and for any two of these open sets if

Vi ∩ Vj 6= ∅ then si|Vi∩Vj
= sj|Vi∩Vj

. We note, of course, that
there are only a finite number of possible pairs of sets, as there
is a finite number of such sets. For every element in an open set
described here take a representative in an appropriate scheme
Fi. Find a scheme F that is larger than any of these schemes,
and examine the corresponding representatives in this case. We
note that as F is a scheme we must have an element t ∈ F(U)
that restricts to the appropriate corresponding representative
on each Vi. This element t then has a corresponding element
s ∈ lim

→
(Fi(U)) that satisfies s|Vi

= si. So, the presheaf satisfies

the second requirement to be a sheaf.
The presheaf satisfies both requirements to be a sheaf, and

is therefore a sheaf. I note that, if this proof is correct, then
the requirement that X be a noetherian topological space is
stronger than it needs to be. We need only require that X is
compact.

2.1.13: Espace Étale of a Presheaf. (This exercise is included only
to establish the connection between our definition of a sheaf and
another definition often found in the literature. See for example
Godement [1. Ch. II, Section 1.2].) Given a presheaf F on X,
we define a topological space Spe(F), called the espace étalé
of F , as follows. As a set, Spe(F) = ∪p∈XFp. We define a
projection map π : Sp(F) → X by sending s ∈ Fp to P . For
each open set U ⊆ X and each section s ∈ F(U), we obtain a
map s : U → Sp(F) by sending P 7→ sp, its germ at P . This
map has the property that π ◦ s = idU , in other words, it is a
“section” of π over U . We now make Sp(F) into a topological
space by giving it the strongest topology such that all the maps
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s : U → Sp(F) for all U , and all s ∈ F(U), are continuous.
Now show that the sheaf F+ associated to F can be described as
follows: for any open set U ⊆ X,F+(U) is the set of continuous
sections of Sp(F) over U . In particular, the original presheaf
F was a sheaf if and only if for each U , F(U) is equal to the
set of all continuous sections of Sp(F) over U .

Solution by Yuchen Zhang

The first statement follows immediately from the definition.
Recalling that the presheaf F is a sheaf if and only if F (U) =F+(U) for any open set U . The second statement follows ob-
viously.

2.1.14: Support. Let F be a sheaf on X, and let s ∈ F (U) be
a section over an open subset U . The support of s, denoted by
Supp s, is defined to be {P ∈ U : sP 6= 0}, where sP denotes
the germ of s in the stalk FP . Show that Supp s is a closed
subset of U .

Solution by Christian Martinez

Let A = {p ∈ U : sp = 0}. If p ∈ A then (s, U) = 0 ∈ Fp,
i.e, there exists an open neighborhood V ⊂ U of p such that
s|V = 0. Let q ∈ V , since V ⊂ U and s|V = 0 then sq =

(s, U) = 0 ∈ Fq. Thus, V ⊂ A and A is open.

2.1.16: - Flasque Sheaves. A sheaf F on a topological space X is
flasque is for every inclusion V ⊆ U of open sets, the restriction
map F(U) → F(V ) is surjective.

(a) Show that a constant sheaf on an irreducible topological
space is flasque.

Solution by Dylan Zwick

Here take F to be the constant sheaf for an abelian group
A on an irreducible topological space X. Take any open set
V ⊆ X and a continuous function f : V → A. Take some
element a ∈ f(V ), and look at the subset f−1(a) ⊆ V .
As we’ve given A the discrete topology, the element a ∈
A is both open and closed, and so therefore both f−1(a)
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and f−1(a)c are closed in V . This implies they are both
restrictions of closed sets in X, call them X(f−1(a)) and
X(f−1(a)c). We now note that X(f−1(a))∪ (X(f−1(a)c)∪
V c) = X, and as X is irreducible, this implies one must be
equal to X. As f−1(a) is necessarily nonempty, this implies
(X(f−1(a)c) ∪ V c) 6= X, which requires X(f−1(a)) = X,
which implies f−1(a) = V . Therefore, the map f must be
the constant map f(V ) = a, which is obviously a restriction
of the same constant map on any set U , V ⊆ U . So, for any
V ⊆ U we have F(U) → F(V ) is surjective, and therefore
F is flasque.

(b) If 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves,
and if F ′ is flasque, then for any open set U , the sequence
0F ′(U) → F(U) → F ′′(U) → 0 of abelian groups is also
exact.

Solution

We proved in problem 2.1.8 that the functor Γ(U, ·) is left
exact, and so the only thing we need to prove here (that
is, the only thing that requires F ′ to be flasque, and which
isn’t true for any exact sequence of sheaves) is that the
map F(U) → F ′′(U) is surjective. This is a little harder
than it might look.
Take an element s ∈ F ′(U) and a point p ∈ U . Map s
to sp ∈ F ′′

p . As the sequence of stalks is exact there is
an open set Vp ⊆ U and a section tp ∈ F(Vp) such that
g(tp) = s|Vp

, where g is the map from F to F ′′ in our
sequence. Now, take some other point q ∈ U , and its
corresponding tqinF(Vq) constructed in the same manner
as above. If Vp∩Vq = ∅ then there will be nothing to prove.
If Vp∩Vq 6= ∅, then we note that tp|Vp∩Vq

−tq|Vp∩Vq
∈ ker(g),

as both elements in the difference map to sVp∩Vq
∈ F ′′(Vp∩

Vq). So, as our sequence is right exact on the open set
Vp ∩ Vq we know that tp|Vp∩Vq

− tq|Vp∩Vq
= f(r), where f is

the map from F ′ to F . Now, as F ′ is flasque, we know there
is an element r̃ ∈ F ′(Vq) such that r̃|Vp∩Vq

= r. Finally, we
note that g(tq−f(r̃)) = g(tq), and so tq−f(r̃) is an equally
valid representative in the set Vq, where by equally valid we
mean that its image under g is sVq

. So, at the end of the day
what this means is that for any two open sets V1, V2 ⊆ U
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if there exists sections t1 ∈ F(V1 and t2 ∈ F(V2) such that
g(t1) = s|V1

and g(t2) = S|V2
then there exist sections of

F(V1) and F(V2) satisfying these requirements that agree
on the overlap V1 ∩ V2.
Now, suppose we have a collection of open sets Vα ⊆ U and
corresponding sections tα ∈ F(Vα) such that g(tα) = s|Vα

for all α and the sections for any two open sets agree on the
overlap. Then if we say V = ∪Vα then there is an element
t ∈ F(V ) such that g(t) = s|V . As F is a sheaf we know
that there is an element t ∈ F(V ) such that t|Vα

= tα for all
α. Given g(tα) = s|Vα

for all α we know that g(t) is equal
to s|V locally, and therefore as F ′′ is a sheaf g(t) = S|V .
Now we’re almost done. We can take an open cover of
U using open sets of the form Vp described in the first
paragraph. Call a consistent subset of these sets a subset
such that we can choose our sections such that they agree
on the overlap. We know that the set of consistent subsets
is nonempty, as it must include every set Vp alone. Suppose
we have a consistent subset Vβ and a subset W ∈ Vα such
that Vβ ∪W is not consistent. Then, as demonstrated in
paragraph 2, we can construct from Vβ its union V with
corresponding section, and we know from paragraph 1 that
we can choose a section of W such that it’s consistent with
V . This is a contradiction, and therefore no such open
set W exists. Therefore, we can completely cover U with
consistent subsets, and therefore we can find an element
t ∈ U such that f(t) = s. Done!

(c) If 0F ′ → F → F ′′ → 0 is an exact sequence of sheaves,
and if F ′ and F are flasque, then F ′′ is flasque.

Solution

Take an pair of open sets V ⊆ U and a section s ∈ F ′′(V ).
We know from the previous exercise that the sequence on
V is exact, and so there must be an element t ∈ F(V ) such
that f(t) = s. As F is flasque, there is a corresponding
element r ∈ F(U) such that r|V = t. This element r will
map to an element f(r) ∈ F ′′(U), and as the diagram:
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must commute we know that that f(r)|V = s. Therefore,
F ′′ is flasque.

(d) If f : X → Y is a continuous map, and if F is a flasque
sheaf on X then f∗F is a flasque sheaf on Y .

Solution

This is pretty trivial. Take a pair of open sets V ⊆ U in
Y , and a section s ∈ f∗F(V ). This s corresponds exactly,
by definition, to an element s ∈ F(f−1(V )), and as F is
flasque we know there is an element t ∈ F(f−1(U)) such
that t|f−1(V ) = s. This element t corresponds exactly with
an element t ∈ f∗F(U). I’ve allowed some abuse of nota-
tion in refering to sections of f∗F with the same letters as
sections of F , but I’ve done so to indicate the the sheaves
are, by definition, essentially the same, and so have the
same sections.

(e) Let F be any sheaf on X. We define a new sheaf G, called
the sheaf of discontinuous sections of F as follows. For
each open set U ⊆ X, G(U) is the set of maps s : U →
⋃

p∈U Fp such that for each p ∈ U , s(P ) ∈ Fp. Show that
G is a flasque sheaf, and that there is a natural injective
morphism of F to G.

Solution

This is also pretty obvious. For any pair of open sets V ⊆ U
and any section s ∈ G(V ) just define a section t ∈ G(U)
that is equal to s on V and is zero outside of V . This t is a
discontinuous section on U , so it’s a perfectly valid element
of G(U), and it obviously restricts to s on V .
Any element s ∈ F(U) satisfies the requirement of a contin-
uous section, and therefore also satisfies the less restrictive
requirement of a discontinuous section, and so therefore
represents a discontinuous section on U . The natural in-
jective morphism is obvious.

2.1.17: Skyscraper sheaves. Let X be a topological space, let P
be a point, and let A be an abelian group. Define a sheaf iP (A)
on X as follows: iP (A)(U) = A if P ∈ U , 0 otherwise. Verify
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that the stalk of iP (A) is A at every point Q ∈ {P}−, and 0
elsewhere, where {P}− denotes the closure of the set consisting
of the point P . Hence the name “skyscraper sheaf”. Show that
this sheaf could also be described as i∗(A), where A denotes the
constant sheaf A on the closed subspace {P}−, and i : {P}− →
X is the inclusion.

Solution by Stefano Urbinati

Let Q ∈ {P}−. Then for every open set Q ∈ V , we have
that P ∈ V and iP (A)(V ) = A and defining the stalk we have
a direct limit of a constant group, that is iP (A)Q = A. If
Q /∈ {P}− then there exists an open set Q ∈ W such that
P /∈W , that is, for any section s : W → iP (A)(W ), then s ≡ 0,
that implies that sQ = 0.
By definition we have that i∗(A)(U) = A(i−1(U)); now, if P ∈ U
we have that i−1(U) = {P}− and A({P}−) = A by definition.
If P /∈ U , then i−1(U) = ∅ and A(∅) = 0.

2.1.18: Adjoint Property of f−1. Let f : X → Y be a contin-
uous map of topological spaces. Show that for any sheaf F on
X there is a natural map f−1f∗F → F , and for any sheaf G on
Y there is a natural map G → f∗f

−1G. Use these maps to show
that there is a natural bijection of sets, for any sheaves F on X
and G on Y,

HomX(f−1G,F) = HomY (G, f∗F).

Hence we say that f−1 is a left adjoint of f∗ and that f∗ is a
right adjoint of f−1.

Solution by Dylan Zwick

The map f−1f∗F → F will take any open subset U ⊆ X and
associate with it the abelian group given by:

f−1f∗F(U) = lim
V⊆f(U)

f∗F(V ) = lim
V⊇f(U)

F(f−1(V )).

In words, this will be the group given by all elements that are
images of elements in larger open sets W ⊆ X where U ⊆ W
and W is the preimage of an open set in Y .
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To understand the map G → f∗f
−1G we take a look at the

map f∗f
−1G → G. This map will take any open subset V ⊆ Y

and associate with it the abelian group given by:

f∗f
−1G(V ) = (f−1G)(f−1(V )) = lim

W⊆f(f−1(V ))
G(W ) = G(W ).

So, it’s the identity, and therefore its inverse is also the iden-
tity. Thus, the map G → f∗f

−1G is the identity morphism.

To prove the bijection of sets:

HomX(f−1G,F) = HomY (G, f∗F)

we first assume we’ve got an element φ ∈ HomX(f−1G,F)
and show how to find a corresponding element inHomY (G, f∗F).

Suppose we have an open set V ⊆ Y and an element s ∈
G(V ). This element s corresponds in an obvious way with a
unique element s1 ∈ (f−1G)(f−1(V )), and so φ(s1) ∈ F(f−1(V )).
This will again correspond in a (very) obvious way with an el-

ement ˜φ(s1) ∈ (f∗F)(V ). So, our map φ induces a unique
element in HomY (G, f∗F). Call this map of homomorphisms ρ.

Going the other way, assume we’ve got an element ψ ∈
HomY (G, f∗F). Take an open subset U ⊆ X, and an element
t ∈ (f−1G)(U). So, t ∈ limV⊇f(U) G(V ). Take a representative
t1 ∈ G(V1). Then ψ(t1) ∈ f∗F(V1), which corresponds uniquely

to an element ˜ψ(t1) ∈ F(f−1(V1)). If we then restrict this el-

ement ˜ψ(t1) to U ⊆ f−1(V1) we have a well defined map. We
note that for any other representative of t, say t2, we’d have to
have that t1 and t2 restrict to the same element in an open sub-
set containing f(U), and so the restriction of ˜ψ(t2) to U would

have to be the same as the restriction of ˜ψ(t1), and so the map
is indeed well defined. Call this map of homomorphisms σ.

Finally, we need to prove that the two mappings defined here
compose to form the identity map. But this is easy. Take a map
ψ ∈ HomY (G, f∗F) and an open set V ⊆ Y . The map ρ(σ(ψ))
will take an element s ∈ G(V ) to the unique corresponding
element s1 ∈ (f−1G)(f−1(V )), which will then be taken by σ(ψ)
to the obvious representative s ∈ G(V ), which will then be taken
by ψ to ψ(s). So, ρ(σ(ψ)) = ψ and therefore the composition
of the maps is the identity. So, we’ve got our bijection.
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2.1.19: - Extending a Sheaf by Zero. Let X be a topological
space, let Z be a closed subset, let i : Z → X be the inclusion,
let U = X − Z be the complementary open subset, and let j :
U → X be the inclusion.
(a) Let F be a sheaf on Z. Show that the stalk (i∗(F ))P of

the direct image sheaf on X is FP if P ∈ Z, 0 if P /∈ Z.
Hence, we call i∗F the sheaf obtained by extending F by
zero outside Z. By abuse of notation we will sometimes
write F instead of i∗F , and say “consider F as a sheaf on
X" when we mean “consider i∗F ."

Solution by Chris Kocs

If P ∈ Z, then

(i∗F)P = lim
−→
V

(i∗F)(V ) = lim
−→
V

F(i−1(V )) = lim
−→
V

F(V ∩ Z) = FP ,

where the direct limit is taken over all open sets V contain-
ing P in X. Suppose P /∈ Z. For any pair <V, s> repre-
senting an element in (i∗(F|Z))P where V is an open subset
of X and s ∈ (i∗(F|Z))(V ), s|V ∩U = 0 as (i∗(F|Z))(V ∩
U) = F(i−1(∅)) = 0. Hence, (i∗(F|Z))P = 0.

(b) Now let F be a sheaf on U . Let j!F be the sheaf on X
associated to the presheaf V 7→ F(V ) if V ⊆ U , V 7→ 0
otherwise. Show that the stalk (j!F)P is equal to FP if
P ∈ U , 0 if P /∈ U , and show that j!F is the only sheaf
on X which has this property and whose restriction to U is
F . We call j!F the sheaf obtained by extending F by zero
outside U .

Solution

Denote by F ′ the presheaf V 7→ F(V ) if V ⊆ U , V 7→ 0
otherwise. If P ∈ U ,

(j!F)P = F ′
P = lim

−→
V

F ′(V ) = lim
−→
V

F ′(V ∩ U) = lim
−→
V

F(V ∩ U) = FP ,

where the direct limit is taken over all open sets V con-
taining P in X. If P /∈ U , then F ′(V ) = 0 for all open
neighborhoods V of P in X. Hence, (j!F)P = F ′

P = 0.
Now, the morphism θ : F ′ → j!F associated with the
presheaf F ′ restricts to a morphism F ′|U → j!F|U . Recall
from the proof of sheafification that θP is an isomorphism
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for all P ∈ X, so by problem 1.2, F ′|U = F is isomorphic
to j!F|U as sheaves on U . Suppose G is another sheaf who
restriction to U is F and whose stalk GP is FP if P ∈ U
and 0 if P /∈ U . There is a morphism φ : F ′ → G sending
every open subset V of X to F(V ) if V ⊆ U , 0 otherwise.
Moreover, φ factors through θ. Since φP is an isomorphism
for all P ∈ X by construction, j!F|U is isomorphic to G.

(c) Now let F be a sheaf on X. Show that there is an exact
sequence of sheaves on X,

0 → j!(F|U) → F → i∗(F|Z) → 0

Solution

Let θ and φ be defined as in part (b) except using F|U
instead of F and F instead of G. Then there exists a
morphism φ′ : j!(F|U) → F such that φ = φ′ ◦ θ. Consider
the sequence of sheaves

0 → j!(F|U)
φ′

−→ F
ψ
−→ i∗(F|Z) → 0,(4)

where ψ(Γ(V,F)) = Γ(V ∩ Z,F) for all open subsets V
of X. For P ∈ X, consider the corresponding sequence of
stalks

0 → (j!(F|U))P
φ′

P−→ FP
ψP−→ (i∗(F|Z))P → 0.

If P ∈ U , then by (a) and (b), the above sequence becomes

0 → FP

φ′
P−→ FP

ψP−→ 0 → 0,

where φ′
P is an isomorphism. If P /∈ U , then we have the

sequence

0 → 0
φ′P−→ FP

ψP−→ FP → 0,

where ψP is an isomorphism. Therefore, in either case,
the sequence is exact, so by problem 1.2, (4) is exact as a
sequence of sheaves.

2.1.20: - Subsheaf with Supports. Let Z be a closed subset of
X, and le F be a sheaf on X. We define ΓZ(X,F) to be the
subgrup of Γ(X,F) consisting of all sections whose support is
contained in Z (recall: Supps = {P ∈ X|sP 6= 0}).
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(a) Show that the presheaf V 7→ ΓZ∩V (V,F|V ) is a sheaf. It
is called the subsheaf of F with supports in Z, and it is
denoted by H0

Z(F).

Solution by Veronika Ertl

Again, (0),(1) and (2) are easy to verify, as it comes from a
sheaf F . We have to verify the uniqueness and the glueing
property.
(3) Let U be an open set,and {Vi} a covering of U . Let
s, t ∈ ΓZ∩U(U,F |U), such that s|Vi

= t|Vi
. The sections

s and t are in fact in F(U) with the additional property,
that their support is in U ∩ Z, and we can just apply the
uniqueness property of the original sheaf.
(4) The same reasoning holds for the glueing property.
Let si ∈ ΓZ∩Vi

(Vi,F |Vi
) such that they coincide on the

overlaps. As they are in the F(Vi) respectively, there is
s ∈ F(U) such that s|Vi

= si for each i. We have to check
that the support of this s is in Z ∩U . Let P ∈ Supp s. As
P ∈ U , there is i, such that P ∈ Vi and therefore sP = siP .
This means, that P ∈ Supp si which is by definition con-
tained in Z ∩ Vi ⊂ Z ∩ U .
However, I think (but I’m not sure), it should contain the
zero section by definition for every open subset?!?

(b) Let U = X −Z, and let j : U → X be the inclusion. Show
there is an exact sequence of sheaves on X

0 → H0
Z(F) → F → j∗(F |U).

Furthermore, if F is flasque, the map F → j∗(F |U) is
surjective.

Solution

Consider the following sequence:

0 → H0
Z(F)

α
−→ F

β
−→ j∗(F |U).

Recall that for every open subset V ⊆ X, the group H0
Z(F)(V )

is the subgroup of F(V ) consisting of all sections, whose
support is in Z ∩ V . So the morphism α is given on open
subsets by inclusions

α(V ) : H0
Z(F)(V ) → F(V ) , s 7→ s,
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and therefore it is clearly injective (for injectivity it is suf-
ficient to check it on open subsets). The sheaf j∗(F |U) is
given on open subsets as

V 7→ j∗(F |U)(V ) = F |U(j−1(V )) = F |U(U ∩ V ).

It follows, that the morphism β : F → j∗(F |U) is given on
open subsets by

β(V ) : F(V ) → j∗(F |U)(V ) , s 7→ s|U∩V .

Now we have to check that Imα = Kerβ. As we deal with
sheaves associated to presheaves (at least in the case of the
image), we have to check it on stalks. We consider two
cases: P ∈ U and P ∈ Z.
Case 1: P ∈ Z: It is not difficult to determine the image of
αP . Let sp ∈ H0

Z(F)P represented by 〈s ∈ H0
Z(F)(V ), V 〉,

where V is an open subset containing P ans s ∈ F(V ) such
that Supp s ⊆ Z ∩ V . Since P is in Z, we may choose V
containing P small, and see, that ℑ(αP ) = FP (it contains
the zero section by definition, cf. (a)).
And indeed, FP is the kernel of βP : Let sP ∈ FP , rep-
resented by 〈s, V 〉. Since P is not in U , and β(V ) is the
restriction to V ∩ U , βP (sp) = 0.
Case 2: P ∈ U : To determine the image of αP , note that
P /∈ Z. If sP ∈ H0

Z(F)P it can be represented by 〈s, V 〉,
where s is a section ofF(V ) such that Supp s ⊆ Z ∩ V . As
we take the direct limit of Z ∩ V over all V containing P ,
this is the empty set. Thus, we get sP = 0. So ℑ(αP ) = 0.
To determine the kernel of βP let again sP be represented
by 〈s, V 〉. Since β(V ) is the restriction to V ∩U and P ∈ U ,
we can choose V ⊆ U , and we see, that sp mustbe zero,
if it’s in the kernel of βP . This shows the first part of the
assertion.

Let now F be flasque. This means, that for every inclusion
V ⊆ U of open subsets, the restriction map is surjective.
To show that F → J∗(F |U) is surjective, we verify this
again on stalks. Let tP ∈ j∗(F |U)P repesented by 〈t ∈
F |U(U ∩ V ), V 〉, V ∋ P . If P ∈ U , we can choose V such
that P ∈ V ⊆ U . This means that F |U(U ∩ V ) = F(V )
and so tP ∈ FP . In this case, βP is just the identity and
naturally surjective. If P ∈ Z, β(V ) is the restriction map
F(V ) → F |U(U ∩ V ) = F(U ∩ V ). But since F is flasque,
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this map is surjective for every V , so t has a preimage in
F(V ). Choosing V small enough, we see, that tP has a
preimage in FP . So, β is surjective.

2.1.22: Gluing Sheaves. Let X be a topological space, let U =
{Ui} be an open cover of X, and suppose we are given for
each i a sheaf Fi on Ui, and for each i, j an isomorphism
φij : Fi|Ui∩Uj

→ Fj|Ui∩Uj
such that

(1) for each i, φii = id, and
(2) for each i, j, k, φik = φjk φij on Ui ∩ Uj ∩ Uk.

Then there exists a unique sheaf F on X, together with iso-
morphisms ψi : F|Ui

→ Fi such that for each i, jψj = φij ◦ψi on
Ui∩Uj . We say loosely that F is obtained by gluing the sheaves
Fi via the isomorphisms φij.

Solution by Ray Lai

For X = ∪Ui with sheaves Fi on Ui, we define the presheaf
F by

F(U) =

{

0 if U * Ui for any i.
Fi(U) if U ⊆ Ui for some i.

}

Then from properties of isomorphisms φij, it’s easy to show this
presheaf is well-defined. Note however this may NOT be a sheaf.
In order to get the required sheaf, we take the sheafification and
still denote it by F . The natural map θ between the original
presheaf and its sheafification gives canonical isomorphisms θi :
F(Ui) → Fi(U).


