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Today we’re going to use the tools we’ve developed in the last two
lectures to analyze some systems of nonlinear differential equations that
arise in simple ecological models.

The idea behind these models is that there are two different species liv-
ing within and interacting within the same environment. Now, our models
will be very simple; far, far simpler than any real ecological system. How-
ever, the models still exhibit some interesting qualitative behavior that can
help us understand what happens in actual ecological systems. Plus, the
models are interesting in their own right as differential equations.

The assigned problems for this section, and the last assigned problems
for this course, are:

Section 6.3 - 3, 4, 5, 6, 7

The Predator-Prey System

Suppose we have two species, species x and species y, and these two
species interact within an ecological system. For this system, we’ll assume
that species x is an organism that feeds upon some other organism abun-
dant in the environment, while species y is an organism that feeds upon,
well, special x! So, species y is a predator, and species x is the prey. We’ll
make the following assumptions.

• Without predators, the prey population would grow at a rate directly
proportional to its population dx/dt = ax.
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• Without prey, the predator population would decrease at a rate di-
rectly proportional to its population dy/dt−−by.

• When both predators and prey are present, in combination with these
natural rates of growth and decline, the size of the predator popula-
tion increases with the size of the prey population, and the size of the
prey population decreases with the size of the predator population.

Stated mathematically, we have the system of differential equations:

dx

dt
= ax − pxy = x(a − py),

dy

dt
= −by + qxy = y(−b + qx).

This is known as a predator-prey system.

This system has two critical points, (0, 0), and (b/q, a/p).

Our Jacobian matrix for this system is:

J(x, y) =

(

a − py −px
qy −b + qx

)

.

At (0, 0) this Jacobian is:

J(0, 0) =

(

a 0
0 −b

)

.

This matrix has eigenvalues λ1 = a > 0, and λ2 = b < 0. So, the point
(0, 0) is an unstable saddle point.

The critical point (b/q, a/p) gives us the Jacobian matrix:

J(b/q, a/p) =

(

0 −pb

q
aq

p
0

)

.
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This Jacobian has the pure imaginary eigenvalues /\1, ‘2 = +i/. So,
the linearlization is a stable center, and the actual behavior is undeter
mined, as it could be either a stable center, an unstable spiral sink, or a
stable spiral source. If we draw the phase portrait for this system it looks
like:

Competing Species

Let’s now consider a system in which we have two populations i and g,
and on their own both populations satisfy the logistic growth equations:

di
= — b1:r,

d!J
= (l2

— b211.
di

When these populations share an environment they compete, and each
negatively impacts the growth of the other, creating the interacting system
of differential equations:

c’c çd

So, it appears the point (b/q, o/p) is, in fact, a stable center.
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dx

dt
= a1x − b1x

2 − c1xy = x(a1 − b2x − c1y),

dy

dt
= a2y − b2y

2 − c2xy = y(a2 − b2y − c2x).

This is a competition system, and it has four critical points. Three of these
points are: (0, 0); (0, a2/b2); (a1/b1, 0). The fourth critical point will be the
simultaneous solution to the system:

b1x + c1y = a1

c2x + b2y = a2

.

We’ll call this fourth point (xE , yE). We’ll assume there is a unique
solution (so the two equations are not linearly dependent) and the point
(xE , yE) is in the first quadrant. We want to know if the critical point
(xE , yE) is stable, and it turns out this depends upon the relative values
of c1c2 and b1b2. If c1c2 < b1b2, it’s a stable critical point, and all initial pop-
ulations where both species are present will approach it. If b1b2 < c1c2 then
it’s an unstable critical point, and any initial population with both species
present will exhibit extinction of one or the other species.

Example - Find the critical point (xE , yE) for the system:

dx

dt
= 14x −

1

2
x2 − xy,

dy

dt
= 16y −

1

2
y2 − xy.

Will the critical point be stable or unstable? Draw the corresponding
phase portrait for this system.

Solution - The critical point for this system will be the unique solution
to the system of linear equations:

1

2
x + y = 14
x + 1

2
y = 16
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This unique solution is the point (12, ). We could analyze the Jacobian
matrix at this point to find that we get two real eigenvalues of opposite
sign, or we could just note h1b2 = 1/4, while C1C2 = 1, so from our above
rule we know it’s an unstable critical point. The phase portrait for our
system looks like:

3 R)

From this we see that, depending on the initial conditions, one species
will eventually dominate. There can be only one!
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Exaniple - Find the critical point (:i,, y,) for the system:

the
= 14x — 2i —

ciij 2
— lüy—2y —:iy.
cit

Will the critical point be stable or unstable? Draw the corresponding

phase portrait for this system.

Solution - The critical point for this system will be the unique solution

to the system of linear equations:

2i: + ij = 14
r + 2!) = 16

This unique solution is the point (4, 6). Here, b1b2 = 1, while C1C2 = 1,

so this point is a stable critical poipt. The phase portrait for our system
looks like:

(oJ)

So, for any initial population where both species are present, we reach

a state of “peaceful coexistence”. Isn’t that nice!

(7,0)
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Notes on Homework Problems

Problem 6.3.3 is very interesting, and shows how it’s possible that, by at-
tempting to decrease the population of a harmful species in a population,
it’s possible to do just the opposite!

Problems 6.3.4 through 6.3.7 step you through an analysis of all four
critical points of a competition system. These problems can all be viewed
as part of one big problem. Taken as individual parts, it shouldn’t be too
bad, and is very similar to the example problems from the textbook.
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