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Last time, in lecture 44, we introduced two-dimensional autonomous
systems of differential equations. Unlike almost all the differential equa-
tions we’ve studied so far in this class, these differential equations were
not assumed to be linear. We looked at some phase diagrams, defined
critical points, and classified the types of critical points.

Today, we’re going to take a closer look at how we analyze the behav-
ior of a system around a critical point, and how we can mathematically
determine the type of critical point.

Today’s lecture corresponds with section 6.2 from the textbook, and the
assigned problems for this section are:

Section 6.2 - 1, 5, 8, 15, 31

Linearization

We’ll assume throughout that any critical point we’re examining is an iso-
lated critical point, which means in a small enough region around the criti-
cal point, there are no other critical points.

We’ll also frequently assume that the isolated critical point is the point
(0, 0). This isn’t as restrictive as you might think1 in that for any other
critical point (a, b) we can just shift our system with the transformation
u = x − a, and v = y − b. The shifted system will have the same behavior

1In fact, it’s not restrictive at all.
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as the original system, just with all x-values shifted to the left by a, and all
y-values shifted down by b.

If our functions f(x, y) and g(x, y) are continuously differentiable at
the critical point (x0, y0) then around this point we can approximate the
functions by:

f(x, y) ≈ f(x0, y0) + fx(x0, y0)x + fy(x0, y0)y,

g(x, y) ≈ g(x0, y0) + gx(x0, y0)x + yy(x0, y0)y.

As f(x0, y0) = g(x0, y0) = 0 at a critical point by definition, around a
critical point we have:

dx

dt
= fx(x0, y0)x + fy(x0, y0)y,

dy

dt
= gx(x0, y0)x + gy(x0, y0)y.

We can write this in matrix notation as:

(

x′

y′

)

=

(

fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

) (

x

y

)

= J(x0, y0)

(

x

y

)

.

Here J(x0, y0) is the Jacobian matrix you may remember from multivari-
able calculus.2

The behavior of our system around a critical point depends on this
Jacobian matrix. In particular, it depends upon the eigenvalues of the Ja-
cobian matrix.

2Or, you may not remember it.
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Critical Points and Eigenvalues

To determine the behavior of our system around a critical point, we look
at the eigenvalues of the Jacobian matrix at that critical point. We will
assume our critical point is (0, 0), and that the critical point is isolated,
which means λ = 0 will not be an eigenvalue of the Jacobian matrix.3

The five possibilities for the two eigenvalues are are:

• real and unequal with the same sign;

• real and unequal with opposite sign;

• real and equal;

• complex conjugates with nonzero real part;

• pure imaginary numbers.

We’ll examine each of these in turn, in the context of an example.

3Why?
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Exam pie - Suppose (0, 0) is a critical point of our system, and the Jaco
bian matrix at (0, 0) is:

1(7 3
17

What is the behavior of our solution curves around this critical point?

Solution - The eigenvalues of this matrix are ) = 1 and /\ = 2, with

associated eigenvectors

13
= “ 1

11
and v9= l\3

The correspoding phase diagram looks like:

In general, if \I, X are both positive, then we have an improper nodal
source, and if they’re both negative, we have an improper nodal sink.

From here we can see that (0. 0) is an improper nodal source.
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Exam pie - Suppose (0, 0) is a critical point of our system, and the Jaco
bian matrix at (0, 0) is:

14 5 —3
—5

What is the behavior of our solution curves around this critical point?

Solution - Here the eiganvalues are i 1 and —1, with associated
eigenvectors:

(1v1=1j. and v2=3

From here we can see that (0, 0) is a saddle point.

In general, if and A2 are real with opposite sign then the critical point
is a saddle point.

The correspoding phase diagram looks like:
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Exaiiiple - Suppose (0, 0) is a critical point of our system, and the Jaco
bian matrix at (0, 0) is:

11—11 9
—i 0

What is the behavior of our solution curves around this critical point?

Solution - Here the eiganvalues are = —1 and ? = —1, with associ
ated eigenvector:

/13

The vector

11
V2 Zr

is a generalized eigenvector based on v1, but only v1 shows up in the
phase diagram:

From here we can see that (0, 0) is an improp’r nodal sink.
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In general, if A1 and ‘\2 are real and equal, then if there are two linearly
independent eigenvectors the critical point is a proper node, and if not the
critical point is an improper node. If A1, ‘\2 are positive the critical point is
a source, while if they’re negative the critical point is a sink.

Example - Suppose (0, 0) is a critical point of our system, and the Jaco
bian matrix at (0. 0) is:

1 (‘ —10

\ ‘

What is the behavior of our solution curves around this critical point?

Solution - Here the eiganvalues are A = — ± 3i. The corresponding
phase diagram looks like:

In general, if A1 and A2 are complex conjugates then the critical point is
a spiral point. If the real part is negative it’s a sink, and if the real part is
positive it’s a source.

15
8

From here we can see that (0, 0) is a saddle point, and a sink.
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Exa,iiple - Suppose (0, 0) is a critical point of our system, and the Jaco

bian matrix at (0, 0) is:

1( —9 15
4k\_15 9

What is the behavior of our solution curves around this critical point?

Solution - Here the eiganvalues are \ = +31. The correspoding phase
diagram looks like:

From here we can see that (0, 0) is a stable center.
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Stability

The eigenvalues of the Jacobian not only tell us the type of critical point,
but these eigenvalues also tell us whether or not the critical point is stable.
If λ1, λ2 are the eigenvalues of the Jacobian at a critical point then:

1. The critical point is asymptotically stable if the real parts of both
eigenvalues are negative.

2. The critical point is stable but not asymptotically stable if the real
parts are both zero. (So the eigenvalues are pure imaginary.)

3. The critical point is unstable if either eigenvalues has a positive real
part.

We can see examples of all thes possibilities in those examined above.

Notes on Homework Problems

Exercises 6.2.1, 6.2.5, 6.2.8, 6.2.15, and 6.2.31 are all about finding and clasi-
fying critical points. Shouldn’t be too hard. Don’t worry about verifying
your conclusion with a computer system or graphing calculator.
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