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Suppose a two-dimensional object, or lamina, occupies a region R in
the xy-plane. Under some reasonable assumptions we can derive that the
flow of temperature through this object will satisfy the partial differential
equation:

∂u

∂t
= k

(

∂2u

∂x2
+

∂2u

∂x2

)

.

If we assume there have been no major changes to the system for a
while, the system will be in a steady-state, where the temperature at a given
point is not changing in time. In this situation our differential equation
will satisfy:

0 =
∂u

∂t
= k

(

∂2u

∂x2
+

∂2u

∂x2

)

.

The equation on the right (divided by k) is the two-dimensional Laplace
equation

∇
2u =

∂2u

∂x2
+

∂2u

∂y2
= 0.

It is also known as the potential equation. Today, we’re going to talk
about how to solve this equation in some simple situations.

This lecture corresponds with section 9.7 from the textbook, and the
assigned problems from this section are:

Section 9.7 - 1, 2, 3, 4
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Dirichiet Problems

Suppose we have a bounded plane region R whose boundary is a contin

uous curve C:

A Dirichlet problem is a problem that asks you to solve the Laplace equa
tion in the region R given boundary values on the curve C:

,,d-u dii
2+j20 within]?;

ur. y) f(i. y) on C.

If the boundary curve C and the boundary value function f are rea

sonably well behaved, then there exists a unique solutions to the Dirichlet
problem. Note that “reasonably well behaved” is, of course, defined much
more precisely in more advanced classes where you’d actually prove this
existence and uniqueness result, but here just know that for all the prob

lems we’ll consider things are reasonably well behaved.
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Dirichiet Problem in a Rectangle

Example - Solve the boundary value problem

11r r + yy = 0;

u(0, y) u(a, y) u(i;, b) = 0;

Solution - In general for a problem of this type we’d findfour solutions,
one for each side of the rectangle, with the other sides set to 0, and then
we’d add up the four solutions to get our final solution. So, this problem
is not as limited as you might think.

We will, as usual, use separation of variables here. So, assume our
solution is of the form

u(x, ?J) = X(x)Y(y).

Under this assumption our differential equation gives us:

X”Y+XY”=0=-=-A

(o,b)
u(x, 0) f(x).

(c,b)

(9, y) C

(qo)(o,) o) fc)
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for some constant λ. So, X(x) must satisfy, again, the by now very
familiar eigenvalue problem:

X ′′ + λX = 0

X(0) = X(a) = 0.

The eigenvalues and associated eigenfunctions are:

λn =
n2π2

a2
Xn = sin

(nπx

a

)

.

The differential equation for Y , along with the remaining homoge-
neous boundary condition, gives us:

Y ′′

n −
n2π2

a2
Yn = 0 Yn(b) = 0.

The general solution to this differential equation, using hyperbolic sines
and cosines instead of exponentials, is:

Yn(y) = An cosh
(nπy

a

)

+ Bn sinh
(nπy

a

)

.

The endpoint condition Yn(b) = 0 implies that:

Bn = −An

(

cosh
(

nπb
a

)

sinh
(

nπb
a

) sinh
(nπy

a

)

)

.

From this, after using some trig identities, we get:

Yn(y) = An cosh
(nπy

a

)

− An

(

cosh
(

nπb
a

)

sinh
(

nπb
a

) sinh
(nπy

a

)

)

sinh
(nπy

a

)

=
An

sinh
(

nπb
a

)

(

sinh

(

nπb

a

)

cosh
(nπy

a

)

− cosh

(

nπb

a

)

sinh
(nπy

a

)

)

= cn sinh

(

nπ(b − y)

a

)

,
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where cn =
An

sinh
(

nπb
a

) .

From this we get our formal series solution:

u(x, y) =
∞
∑

n=1

Xn(x)Yn(y) =
∞
∑

n=1

cn sin
(nπx

a

)

sinh

(

nπ(b − y)

a

)

.

It remains only to find the coefficients cn that satisfy the nonhomoge-
neous condition

u(x, 0) =

∞
∑

n=1

(

cn sinh

(

nπb

a

))

sin
(nπx

a

)

= f(x).

Using the orthogonality of the sine functions we get:

cn =
2

a sinh
(

nπb
a

)

∫ a

0

f(x) sin
(nπx

a

)

dx.
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Example - Solve the boundary value problem

uxx + uyy = 0;

u(0, y) = u(a, y) = u(x, b) = 0;

u(x, 0) = x.

Solution - This is the example problem above, with f(x) = x. In this
situation the coefficients cn will be:

cn =
2

a sinh
(

nπb
a

)

∫ a

0

x sin
(nπx

a

)

dx

=
2

a sinh
(

nπb
a

)

(

a2

n2π2
sin
(nπx

a

)

−
ax

nπ
cos
(nπx

a

)

)

∣

∣

∣

∣

∣

a

0

=
2a(−1)n+1

nπ sinh
(

nπb
a

) .

The corresponding solution will be:

u(x, y) =
∞
∑

n=1

(

2a(−1)n+1

nπ sinh
(

nπb
a

)

)

sin
(nπx

a

)

sinh

(

nπ(b − y)

a

)

.
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Notes on Homework Problems

As mentioned, the Dirichlet problem we solved is not as restricted as you
might imagine, and to solve the problem in general for a rectangular re-
gion we’d combine four solutions, one for each side. The solution for one
side is done as an example problem above. The solution for the other three
sides are problems 9.7.1, 9.7.2, and 9.7.3. These are all very similar to the
example problem.

Problem 9.7.4 investigates a different type of boundary value problem,
where instead of specifying the value of the function on all sides, on some
sides the value of the function’s normal derivative (the derivative in the
direction away from the region) is specified. A problem where derivatives
are specified like this is called a Neumann boundary-value problem. Prob-
lem 9.7.4 investigates one such problem.
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