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In today’s lecture we’ll discuss how Fourier series can be used to solve
a simple, but very important partial differential equation. Namely, the one-
dimensional heat equation. This is probably the first time you’ve ever met
a partial differential equation. It’s high time you were introduced.

This lecture corresponds with section 9.5 from the textbook. The as-
signed problems are:

Section 9.5 - 1, 3, 5, 7, 9

Heat Conduction and Separation of Variables

The flow of heat through a long, thin rod can be modeled by the one-
dimensional heat equation:

∂u

∂t
= k

∂2u

∂x2
.

Here, u(x, t) is a function of both displacement, x, and time, t, and k is
a given positive constant called the thermal diffusivity.

We want to solve this equation for a given set of boundary conditions. In
ordinary differential equations, the boundary conditions are usually num-
bers. In partial differential equations, the boundary conditions are usually
functions. Here we’ll assume our boundary conditions are of the form:
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u(0, t) = u(L, t) = 0, (t > 0),

u(x, 0) = f(x), (0 < x < L).

The important idea here is that our partial differential equation is linear.
So, for any two solutions u1, u2 we have that c1u1 + c2u2 satisfy the partial
differential equation, and if u1, u2 satisfy the above boundary conditions
on x (called homogeneous boundary conditions) then u1, u2 will as well. Su-
perposition does not work for the boundary condition u(x, 0) = f(x), and
here is where we need Fourier series. We want to find a linear combina-
tion of our almost solutions such that at time t = 0 the linear combination
is equal to f(x), and gives us a solution.

Example - It is easy to verify by direction substitution that each of the
functions:

u1(x, t) = e−t sin x, u2(x, t) = e−4t sin 2x, u3(x, t) = e−9t sin 3x,

satisfy the equation ut = uxx. Use these functions to construct a solu-
tion to the boundary value problem with boundary values:

u(0, t) = u(π, t) = 0,

u(x, 0) = 80 sin3 x = 60 sinx − 20 sin 3x.

Solution - All our functions satisfy the boundary conditions u(0, t) =
u(π, t) = 0, and so we want a linear combination such that:

c1e
−t sin x + c2e

−4t sin 2x + c3e
−9t sin 3x = 60 sinx − 20 sin 3x

when t = 0. But this is easy. We can just eyeball it to get c1 = 60, c2 = 0,
and c3 = −20. So, our solution is:

u(x, t) = 60e−t sin x − 20e−9t sin 3x.

That last one was pretty easy. It’s also the exception. Usually, we have
to find an infinite number of solutions, and make an infinite series equal
to f(x). You knew it couldn’t be that easy, right?
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Separation of Variables

Suppose we have the boundary values u(x, 0) = u(x, L) = 0. We’re going
to assume our function u(x, t) can be written as the product of two func-
tions, one a function of x alone, and the other a function of t alone. This
approach is called separation of variables. So,

u(x, t) = X(x)T (t).

Plugging this into our differential equation and doing some algebra we
get

X ′′

X
=

T ′

kT
.

If both X and T are non-trivial functions, this is only possible if both
are equal to a constant:

X ′′

X
=

T ′

kT
= −λ.

This gives us two ordinary differential equations. We’re now back to
familiar territory.

X ′′ + λX = 0,

T ′ + λkT = 0.

The first must satisfy the boundary conditions X(0) = X(L) = 0, and
so we have an eigenvalue problem like the ones we dealt with in section
3.8.1 Well, if we recall section 3.8, we’ll remember that the allowable values
of λ are

λn =
n2π2

L2
,

1Bet you thought you were done with those, didn’t you?
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and the eigenfunctions are

Xn(x) = sin
nπx

L
.

If we plug this value for λ into our differential equation for T we get:

T ′

n +
n2π2k

L2
Tn = 0,

A non-trivial solution to this differential equation is:

Tn(t) = e−n2π2kt/L2

.

So, our solution will be:

u(x, t) =

∞
∑

n=1

cne
−n2π2kt/L2

sin
nπx

L
.

We just need to determine what the coefficients cn are. This ain’t so
bad. We want to pick the cn so that they satisfy

u(x, 0) =

∞
∑

n=1

cn sin
nπx

L
= f(x).

But this is the Fourier sine series for f(x) on the interval 0 < x < L,
and so we have:

cn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.
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And we’ve got our solution! Hooray!

Example - Suppose that a rod of length L = 50cm is immersed in steam
until its temperature is u0 = 100◦C throughout. At time t = 0, its lateral
surface is insulated and its two ends are imbedded in ice at 0◦C. Calculate
the rod’s temperature at its midpoint after half an hour if it is made of (a)
iron (k = .15); (b) concrete (k = .005).

Solution - The boundary value problem for the rod is given by:

ut = kuxx,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0.

Now, we’ve solved the Fourier series for a square wave a bunch of
times, so I’ll just cut to the chase and give that the Fourier coefficients are

b2n+1 =
4u0

(2n + 1)π
,

for the odd coefficients, and the even coefficients are 0. So, the temper-
ature in the rod will be:

u(x, t) =
4u0

π

∞
∑

n odd

1

n

(

e−
n
2

π
2

k

L2
t

)

sin
(nπx

L

)

.

Plugging in u0 = 100, L = 50, and k = .15 (for iron) we get that
u(25, 1800) ≈ 43.85◦C. Doing the same with k = .005 (for concrete) we
get u(25, 1800) ≈ 100.00◦C. So, concrete is a very good insulator.

Notes on Homework Problems

ALL the homework problems for this section are variations on a theme.
Namely, they’re all boundary value problems like the example problem
above. I want you to get comfortable with solving this type of problem.
You may even see this type of a problem on a final exam.
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