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In the last lecture I introduced the idea of a Fourier series, and we
learned how to calculate a Fourier series for a function with period 2π.
Of course, not all periodic functions have period 2π, so you may very well
ask what we can do, if anything, with arbitrary periodic functions. In to-
day’s lecture we’ll show that we can generalize our Fourier series formula
from functions with period 2π to functions with arbitrary period. Note
this lecture is a little shorter than usual.

Today’s lecture corresponds with section 9.2 from the textbook. The
assigned problems for this section are:

Section 9.2 - 1, 9, 15, 17, 20

General Fourier Series and Convergence

Suppose we have a function f(t) with period 2L, where L > 0. If we
define:

g(u) = f

(

Lu

π

)

,

we see g(u) is 2π periodic. So, the Fourier series, as defined in the last
lecture, for g(u) is:
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g(u) ∼
a0

2
+

∞
∑

n=1

(an cos (nu) + bn sin (nu)).

The coefficients are:

an =
1

π

∫

π

−π

g(u) cos (nu)du,

bn =
1

π

∫

π

−π

g(u) sin (nu)du.

We note that t =
Lu

π
, and so f(t) = g

(

πt

L

)

. From this, we get the

corresponding “Fourier series”1 for f(t):

f(t) ∼
a0

2
+

∞
∑

n=1

(

an cos

(

nπt

L

)

+ bn sin

(

nπt

L

))

,

where

an =
1

L

∫

L

−L

f(t) cos

(

nπt

L

)

dt

bn =
1

L

∫

L

−L

f(t) sin

(

nπt

L

)

dt.

So, this generalizes the concept of a Fourier series to functions of period
2L, where L is any positive number, and not restricted to π. We note that
taking the above integrals from −L to L is, given the 2L-periodicity of the
function, completely arbitrary, and we could integrate instead over any
connected interval of length 2L.

1In quotations because, really, this isn’t so much a derivation as a motivation for a
definition.
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Convergence of Fourier Series

We’ve defined the Fourier series of a function, but what does this Fourier
series have to do with the original function? This question is answered by
the next theorem.

The Convergence Theorem - Suppose that the periodic function f(t)
is piecewise smooth. Then its Fourier series converges to:

1. the value f(t) at each point where f is continuous

2. the value
1

2
[f(t+)+ f(t−)] at each point where f(t) is discontinuous.2

Example - Find the Fourier series of a square wave function with period
4:

f(t) =







−1 −2 < t < 0
1 0 < t < 2
0 t = {−2, 0}

Solution - We first note that f(t) is odd, so all the an terms in the Fourier
series will be zero. The period here is 4 = 2L, so the bn Fourier coefficients
are:

bn =
1

2

∫

2

−2

f(t) sin
nπt

2
dt

(noting f(t) is odd, so f(t) sin nπt

2
is even)

=

∫

2

0

f(t) sin
nπt

2
dt

=

∫

2

0

sin
nπt

2
dt = −

2

nπ
cos

nπt

2

∣

∣

∣

∣

2

0

= −
2

nπ
((−1)n − 1)

=

{

0 n even
4

nπ
n odd

2Note that f(t+) means the limit of f as its argument approaches t “from the right”,
while f(t−) means the limit of f as its argument approaches t “from the left”.
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So, our Fourier series is

f(t) ∼
4

π

∑

n odd

sin
(

nπt

2

)

n
.

If we plug in t = 1 we get:

f(1) = 1 =
4

π

(

sin
(π

2

)

+
1

3
sin

(

3π

2

)

+
1

5
sin

(

5π

2

)

+ · · ·

)

=
4

π
(1 −

1

3
+

1

5
−

1

7
+

1

9
−

1

11
+ · · · ),

and so,

π = 4(1 −
1

3
+

1

5
−

1

7
+

1

9
−

1

11
+ · · · )

which is the famous Leibniz formula for π!

Notes on Homework Problems

Problems 9.2.1 and 9.2.9 involve finding a Fourier series for a specified
periodic function. Very similar to the example problem above.

Problems 9.2.15 and 9.2.17 require a little work (mostly algebra) but
they’re some of my favorite problems we do all semester, because they
let us derive really neat relations. Kind of like the one at the end of the
example problem above.

On problem 9.2.20 please remember that the function is 2π-periodic.
This is a frequent source of confusion on this problem.
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