Math 2280 - Lecture 30

Dylan Zwick

Fall 2013

In today's lecture we're going to discuss how to take Laplace transforms of step functions, how these relate to translations, and how the calculation of Laplace transforms can be simplified for periodic functions.

This lecture corresponds with section 7.5 from the textbook. The assigned problems are:

Section $7.5-1,6,15,21,26$

Step Functions, Translations, and Laplace Transforms

We begin this lecture by examining a very simple function: the unit step function, which is defined by:

The Laplace transform of this function is:

$$
\begin{gathered}
\mathcal{L}(u(t-a))=\int_{0}^{\infty} e^{-s t} u(t-a) d t=\int_{a}^{\infty} e^{-s t} d t \\
\quad=\int_{0}^{\infty} e^{-s(t+a)} d t=e^{-a s} \int_{0}^{\infty} e^{-s t} d t=\frac{e^{-a s}}{s}
\end{gathered}
$$

The Laplace transform of $u(t)$ (the step function with "step" at $t=0$) is the same as the Laplace transform of 1 , and we see that multiplication of the transform of $u(t)$ by $e^{-a s}$ corresponds to the translation $t \rightarrow t-a$ of the original independent variable. Turns out this is a general phenomenon.

We'll get into the general theorem in a second, but before going any further I want to point out that the Laplace transform of the function $f(t)$, and the Laplace transform of the function $u(t) f(t)$ are in fact the same thing! This is because when dealing with the Laplace transform we're completely uninterested in what happens for negative values of the function.

Now, you may say this apathy sounds ridiculous. After all, there's a big difference between the function:

The point is when we're using Laplace transforms we're usually either assuming that our solution begins at some set time, or we calculate a solution that works for non-negative values, extend this solution to the entire real line, and confirm that it works. In many physical applications this is a very reasonable assumption, because most things "begin", and few things have been going on "forever".

Getting back to step functions, we've seen that in the case of the function $f(t)=u(t)$, multiplying the Laplace transform by $e^{-a s}$ is the same as translating the original function by a. This relation holds in general:

Theorem - If $\mathcal{L}(f(t))=F(s)$ exists for $s>c$, then

$$
\begin{gathered}
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) \\
\text { and conversely } \\
\mathcal{L}^{-1}\left(e^{-a s} F(s)\right)=u(t-a) f(t-a)
\end{gathered}
$$

for $s>c+a$.
The proof of this I'll leave as an exercise. It follows directly from the definition of the Laplace transform.

Example - Calculate the inverse Laplace transform of:

$$
F(s)=\frac{e^{-s}-e^{-3 s}}{s^{2}}
$$

Example - Calculate the Laplace transform of the function:

$$
f(t)=\left\{\begin{array}{cc}
2 & 0 \leq t<3 \\
0 & t \geq 3
\end{array}\right.
$$

Example - Calculate the Laplace transform of the function:

$$
f(t)=\left\{\begin{array}{cc}
\sin t & 0 \leq t \leq 3 \pi \\
0 & t>3 \pi
\end{array}\right.
$$

Transforms of Periodic Functions

We say a function defined for $t \geq 0$ is periodic if there is a number $p>0$ such that

$$
f(t+p)=f(t)
$$

for all $t \geq 0$. The least positive value of p (if any) for which the equation holds is called the period ${ }^{1}$ of the function f. If a function is periodic, it's relatively easy to calculate its Laplace transform, and doesn't require the computation of an indefinite integral.

Theorem - Let $f(t)$ be periodic with period p and piecewise continuous for $t \geq 0$. Then the transform $F(s)=\mathcal{L}(f(t))$ exists for $s>0$ and is given by

$$
F(s)=\frac{1}{1-e^{-p s}} \int_{0}^{p} e^{-s t} f(t) d t
$$

The proof of this theorem is kind of fun, so let's go over it.
Proof - The definition of the Laplace transform gives

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t=\sum_{n=0}^{\infty} \int_{n p}^{(n+1) p} e^{-s t} f(t) d t
$$

Now, we note that if we use our periodicity property and the substitution $t=\tau+n p$ we get:

$$
\int_{n p}^{(n+1) p} e^{-s t} f(t) d t=\int_{0}^{p} e^{-s(\tau+n p)} f(\tau+n p) d \tau=e^{-n p s} \int_{0}^{p} e^{-s \tau} f(\tau) d \tau
$$

Using this relation, we see that our Laplace transform is:

$$
F(s)=\sum_{n=0}^{\infty}\left(e^{-n p s} \int_{0}^{p} e^{-s \tau} f(\tau) d \tau\right)=\frac{1}{1-e^{-p s}} \int_{0}^{p} e^{-s \tau} f(\tau) d \tau
$$

For the final equality we used the geometric series formula:

$$
\sum_{n=0}^{\infty} a x^{n}=\frac{a}{1-x} \quad|x|<1
$$

[^0]Example - Calculate the Laplace transform of the square-wave function $f(t)=(-1)^{\lfloor t / a\rfloor}$ of period $p=2 a .^{2}$

Graph:

[^1]Example - Apply this theorem to verify that $\mathcal{L}(\cos k t)=s /\left(s^{2}+k^{2}\right)$.

Notes on Homework Problems

Problems 7.5.1 and 7.5.6 want you to use the translation theorem to find the inverse Laplace transform of some functions. You should be able to recognize these as translations of well-known functions.

Problem 7.5.15 should look mighty familiar.
For problem 7.5.21 you should try to represent the function as a sum of functions involving step functions. Kind of like in problem 7.5.15. Which, as I said, should look mighty familiar.

Problem 7.5.26 involves recognizing the function is periodic, and then calculating an integral.

[^0]: ${ }^{1}$ Sometimes the fundamental period.

[^1]: ${ }^{2}$ The function $\lfloor x\rfloor$ denotes the "greatest integer" function, which means the largest integer not exceding x.

