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Today we're going to delve deeper into how to calculate inverse Laplace
transforms. In particular, we’re going to discuss methods for calculating
inverse Laplace transforms for rational functions, which are functions of
the form:

where both P(s) and ()(s) are polynomials. We'll assume the degree of
P(s) is less than the degree of (s). As lims ., F'(s) = 0 for any Laplace
transform F'(s), this assumption should always be valid.

This lecture corresponds with section 7.3 from the textbook. The as-
signed problems are:

Section 7.3 - 3, 8, 19, 24, 30, 33

Translation and Partial Fractions

As mentioned in the introduction, today we’re going to focus on how to
find inverse Laplace transforms for functions of the form:




where P(s) and ()(s) are polynomials, and the degree of P(s) is less
than that of ()(s). The idea is that we want to use a partial fraction de-
composition. In other words, we want to factor )(s) into its linear and
quadratic parts (which can always, in theory, be done for polynomials
with real coefficients) and then based upon these parts write our quotient
as a sum according to two rules:

Rule 1 - Linear Factor Partial Fractions

The portion of the partial fraction decomposition of R(s) correspond-
ing to the linear factor (s —a) (Where we mean a linear factor of Q)(s))
of multiplicity n is a sum of n partial fractions, having the form:

A A A
s—a (s—a)? (s —a)"
where A, A,, ..., A, are constants.

Rule 2 Quadratic Factor Partial Fractions

The portion of the partial fraction decomposition corresponding to
the irreducible quadratic factor (s — a)? + b* of multiplicity m is a
sum of m partial fractions, having the form:

A1$ + Bl AQS + BQ 4 + AmS + Bm
(s—a2+b  [(s—a2+b)? [(s — a)2 + 2]’

where A, Ay, ..., A, By, Bs, ..., B, are constants.

After we find the partial fraction decomposition we then use it to find
the inverse Laplace transform.



The formulas and relations that we’re going to find most useful are:

Theorem - If F'(s) = L(f(t)) exists for s > ¢, then L(e* f(t)) exists for
s>a+c and

L(e"f(1) = F(s —a),
or equivalently

L7 (F(s—a)) = e"f(t)

Proving this is very simple:

F(s—a)= /000 eI E () dt = /OO e e f(t)|dt = L(e™f(t)).

0
This fact, combined with the relations:

c atyny\ __ n' .
() = o 5@
. s—a _
E(e tCOS]{?t) = m, s > a;
L(e™sinkt) = kL s> a;
(s —a)?+ k%’ ’
et s—a
—tsinkt | = , ;
£<2/<; sin ) (=0 + 12 s>a
1

s> aq;

eat .
L <%(smkt — kt cos k:t)) =

(s —a)?+k2)?

will allow us to figure out the inverse Laplace transform given almost
any partial fraction decomposition. I say almost any because you might
have a quadratic term to a higher than second power. In this case I'd say,
first, that you shouldn’t see those in this class, and second we’ll go over
how you can calculate those Laplace transforms using convolutions in the
next lecture. So, we’ll see that, in theory, the inverse Laplace transform
for any partial fraction decomposition can be calculated. It just might take
a while. Note that a repeated quadratic factor usually corresponds to a
situation where we have resonance in our system.
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Example - Solve the initial value problem:

Y+ 4y + 4y = 1% y(0) = y'(0) = 0.

Solution - Now, we could solve this using techniques we already know,
namely the method of undetermined coefficients, but let’s figure this out
using Laplace transforms. If we take the Laplace transform of both sides
we get:

s%Y (s) +4sY (s) +4Y (S) = %

If we then solve this for Y (s) we get:

2 2
Y = = .
(5) s3(s2+4s+4)  s3(s+2)?

If we calculate the partial fraction decomposition of this we know it
will be of the form:

A B+C D n E
s 82 s (s+2) (s+2)%

If we then solve this for the unknowns (equate the coefficients, do some
linear algebra...) we get:

S 3/8 1/2 1/2  3/8 1/4
YO =—F—7t @ " 5r2 Grof

This will have the inverse Laplace transform:

which is our desired solution. Sweet!
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Example - Apply the translation formula to find the Laplace transform
of:

f(t) = e sin 3t

Solution - We just look at our table to get:

3T

L(ft) = (512724 0m2

Example - Calculate the inverse Laplace transform of the function:

s—1
(s+1)2

F(s) =

Solution - It becomes more straightforward if we rewrite F'(s) as:

s—1 s+1 2 1 2

(s+1)2 (s+12 (s+12 s+1 (s+1)%

Then, we can just read the inverse transforms from our list of standard
inverse transforms:

flty=e"—=2te™" = (1 —2t)e "



Example - Calculate the inverse Laplace transform of the function:

1

PO =iy

Solution - If we factor the denominator we get:

1
(s +3)%(s—2)2

F(s) =

which will have the partial fraction decomposition:

1 Ay n A n As n Ay
(s+3)%(s—2)2 s+3 (s+3)2 s—-2 (s—2)2

This would then imply:
1= Ai(s+3)(s—2)+ Ay(s — 2)> + A3(s + 3)%(s — 2) + Ay(s + 3)%

If we plug in s = 2 we get Ay = 2—15 If we plug in s = —3 we get

1 2 2
Ay = T After some algebra we can get A; = o and A; = BT

Plugging in these values we get:

v % 1% %

(5+32(s—22 s+3 (5+32 (s—2) (s—272

2 1 2 1
1

From here we can again read off the inverse Laplace transform from
our table in a straightforward way:

2 1 2 1
P 2Bt T gest L2t gt
F{t) = 557" + 55te 125¢ T25°°



Notes on Homework Problems

Problems 7.3.3 and 7.3.8 are straightforward applications of the translation
theorem, one involving finding a Laplace transform, the other involving
tinding an inverse Laplace transform.

Problem 7.3.19 gives you some experience with partial fraction decom-
position. Problem 7.3.24 is a slightly more difficult partial fraction decom-
position problem, but fortunately the hardest factorization is done for you.

problem 7.3.30 and 7.3.33 are both linear differential equations that you
should solve using Laplace transform methods.



